C4graphGraph forms for C4 [ 228, 11 ] = SDD(C_57(1,20))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 228, 11 ] = SDD(C_57(1,20)).

(I) Following is a form readable by MAGMA:

g:=Graph<228|{ {114, 115}, {112, 118}, {114, 116}, {114, 117}, {112, 121}, {114, 120}, {112, 123}, {109, 125}, {109, 124}, {101, 119}, {98, 118}, {110, 122}, {108, 120}, {104, 124}, {106, 127}, {99, 117}, {103, 126}, {110, 119}, {100, 121}, {110, 115}, {106, 116}, {94, 123}, {80, 122}, {83, 127}, {77, 125}, {76, 126}, {21, 127}, {16, 126}, {4, 116}, {6, 118}, {5, 117}, {2, 115}, {1, 115}, {15, 125}, {11, 120}, {1, 117}, {8, 124}, {1, 116}, {14, 123}, {12, 121}, {8, 125}, {3, 118}, {2, 119}, {9, 126}, {13, 122}, {2, 122}, {3, 123}, {1, 120}, {3, 121}, {4, 127}, {7, 124}, {10, 119}, {2, 130}, {89, 217}, {74, 202}, {23, 151}, {3, 131}, {67, 195}, {69, 197}, {69, 196}, {73, 200}, {71, 198}, {9, 139}, {4, 135}, {95, 220}, {91, 216}, {85, 214}, {7, 132}, {67, 192}, {8, 140}, {91, 223}, {86, 210}, {78, 202}, {72, 204}, {65, 197}, {5, 128}, {85, 208}, {75, 206}, {65, 196}, {68, 193}, {16, 150}, {6, 129}, {79, 200}, {46, 169}, {34, 165}, {33, 166}, {49, 182}, {63, 184}, {66, 197}, {61, 181}, {35, 170}, {93, 212}, {91, 210}, {86, 223}, {39, 174}, {37, 172}, {62, 183}, {71, 205}, {89, 211}, {20, 159}, {92, 215}, {38, 173}, {70, 205}, {93, 209}, {5, 136}, {92, 209}, {77, 192}, {76, 193}, {75, 198}, {19, 158}, {17, 156}, {8, 133}, {7, 138}, {63, 178}, {37, 171}, {86, 216}, {62, 176}, {6, 137}, {107, 228}, {36, 171}, {18, 157}, {9, 134}, {52, 187}, {53, 186}, {56, 183}, {57, 182}, {36, 180}, {50, 162}, {51, 163}, {44, 189}, {49, 160}, {52, 165}, {71, 214}, {9, 155}, {78, 220}, {39, 181}, {63, 173}, {4, 151}, {87, 196}, {53, 166}, {61, 174}, {38, 178}, {92, 200}, {56, 172}, {57, 173}, {21, 128}, {82, 199}, {31, 138}, {29, 136}, {23, 130}, {22, 129}, {43, 188}, {30, 137}, {35, 187}, {90, 194}, {84, 204}, {73, 209}, {48, 168}, {67, 219}, {68, 220}, {32, 185}, {34, 187}, {10, 144}, {81, 203}, {15, 149}, {14, 148}, {11, 145}, {10, 145}, {88, 195}, {33, 186}, {28, 135}, {24, 131}, {20, 143}, {70, 221}, {66, 222}, {5, 152}, {36, 185}, {27, 134}, {25, 132}, {19, 142}, {17, 140}, {7, 154}, {67, 222}, {12, 146}, {95, 193}, {73, 215}, {38, 184}, {19, 141}, {13, 147}, {49, 175}, {54, 168}, {55, 169}, {57, 167}, {6, 153}, {74, 213}, {26, 133}, {18, 141}, {60, 163}, {64, 223}, {65, 226}, {68, 224}, {102, 195}, {22, 176}, {102, 192}, {24, 190}, {68, 226}, {22, 177}, {31, 184}, {69, 226}, {23, 191}, {73, 225}, {24, 177}, {96, 201}, {74, 227}, {30, 183}, {28, 181}, {26, 179}, {54, 159}, {59, 146}, {10, 160}, {25, 179}, {15, 165}, {14, 164}, {11, 161}, {55, 157}, {25, 178}, {113, 218}, {32, 139}, {29, 182}, {58, 150}, {34, 143}, {111, 194}, {61, 144}, {12, 162}, {13, 163}, {61, 147}, {27, 180}, {48, 159}, {33, 142}, {59, 148}, {29, 173}, {12, 189}, {47, 158}, {43, 154}, {14, 191}, {56, 137}, {57, 136}, {30, 172}, {13, 190}, {105, 218}, {46, 157}, {43, 152}, {39, 147}, {41, 156}, {86, 227}, {44, 153}, {16, 166}, {107, 221}, {45, 155}, {17, 167}, {11, 188}, {39, 144}, {28, 164}, {102, 222}, {91, 227}, {19, 170}, {18, 168}, {40, 146}, {29, 167}, {21, 175}, {21, 174}, {96, 219}, {52, 143}, {53, 142}, {40, 148}, {42, 150}, {41, 149}, {20, 169}, {102, 219}, {95, 226}, {92, 225}, {89, 228}, {31, 161}, {95, 224}, {26, 219}, {93, 156}, {24, 218}, {89, 155}, {72, 138}, {80, 147}, {88, 157}, {101, 160}, {90, 156}, {100, 162}, {27, 220}, {30, 217}, {44, 228}, {93, 149}, {87, 159}, {78, 134}, {45, 228}, {94, 148}, {79, 132}, {97, 170}, {47, 227}, {23, 218}, {108, 161}, {70, 139}, {46, 224}, {113, 191}, {15, 192}, {20, 196}, {108, 188}, {16, 193}, {48, 225}, {27, 202}, {25, 200}, {22, 199}, {18, 195}, {17, 194}, {111, 188}, {96, 179}, {83, 128}, {82, 129}, {31, 204}, {26, 201}, {74, 158}, {88, 141}, {81, 135}, {107, 189}, {90, 140}, {28, 203}, {105, 190}, {54, 225}, {55, 224}, {77, 149}, {105, 177}, {87, 143}, {100, 189}, {76, 150}, {75, 171}, {56, 217}, {109, 140}, {103, 134}, {94, 191}, {55, 213}, {104, 138}, {85, 183}, {84, 182}, {82, 176}, {37, 198}, {99, 128}, {98, 129}, {82, 177}, {52, 215}, {42, 206}, {81, 181}, {50, 214}, {47, 202}, {96, 133}, {85, 176}, {71, 162}, {35, 197}, {113, 151}, {40, 207}, {75, 172}, {58, 210}, {109, 133}, {77, 165}, {62, 214}, {66, 170}, {43, 194}, {72, 161}, {58, 211}, {76, 166}, {105, 131}, {37, 206}, {99, 136}, {98, 137}, {59, 208}, {63, 212}, {64, 171}, {97, 141}, {110, 130}, {104, 132}, {103, 139}, {32, 205}, {106, 135}, {53, 216}, {62, 208}, {80, 190}, {97, 142}, {72, 184}, {88, 168}, {44, 221}, {38, 212}, {107, 153}, {104, 154}, {60, 207}, {113, 130}, {112, 131}, {80, 163}, {45, 217}, {101, 145}, {84, 160}, {50, 198}, {51, 199}, {58, 206}, {59, 207}, {64, 180}, {34, 215}, {111, 154}, {101, 144}, {81, 164}, {100, 146}, {60, 203}, {111, 152}, {40, 208}, {42, 210}, {41, 209}, {51, 203}, {33, 216}, {48, 201}, {42, 211}, {64, 185}, {66, 187}, {47, 213}, {94, 164}, {78, 180}, {36, 223}, {99, 152}, {98, 153}, {84, 175}, {46, 213}, {60, 199}, {65, 186}, {51, 207}, {103, 155}, {83, 175}, {79, 179}, {32, 221}, {108, 145}, {106, 151}, {90, 167}, {83, 174}, {79, 178}, {41, 212}, {35, 222}, {49, 204}, {45, 211}, {87, 169}, {50, 205}, {97, 158}, {54, 201}, {69, 186}, {70, 185} }>;

(II) A more general form is to represent the graph as the orbit of {114, 115} under the group generated by the following permutations:

a: (45, 89)
b: (68, 95)
c: (51, 60)
d: (46, 55)
e: (22, 82)
f: (62, 85)
g: (8, 109)
h: (10, 101)
m: (48, 54)
n1: (30, 56)
a1: (67, 102)
b1: (65, 69)
c1: (23, 113)
d1: (40, 59)
e1: (3, 112)
f1: (1, 2)(3, 7)(4, 10)(5, 13)(6, 8)(9, 18)(11, 23)(12, 25)(14, 31)(15, 30)(16, 19)(17, 22)(20, 36)(21, 39)(24, 43)(26, 44)(27, 46)(28, 49)(29, 51)(32, 48)(34, 37)(35, 42)(38, 40)(41, 62)(45, 67)(47, 68)(50, 73)(52, 75)(54, 70)(55, 78)(56, 77)(57, 60)(58, 66)(59, 63)(61, 83)(64, 87)(65, 86)(69, 91)(71, 92)(72, 94)(74, 95)(76, 97)(79, 100)(80, 99)(81, 84)(82, 90)(85, 93)(88, 103)(89, 102)(96, 107)(98, 109)(101, 106)(104, 112)(105, 111)(108, 113)(110, 114)(116, 119)(117, 122)(118, 124)(120, 130)(121, 132)(123, 138)(125, 137)(126, 141)(127, 144)(128, 147)(129, 140)(131, 154)(133, 153)(134, 157)(135, 160)(136, 163)(139, 168)(142, 166)(143, 171)(145, 151)(146, 178)(148, 184)(149, 183)(150, 170)(152, 190)(155, 195)(156, 176)(158, 193)(159, 185)(161, 191)(162, 200)(164, 204)(165, 172)(167, 199)(169, 180)(173, 207)(175, 181)(177, 194)(179, 189)(182, 203)(186, 216)(187, 206)(188, 218)(192, 217)(196, 223)(197, 210)(198, 215)(201, 221)(202, 224)(205, 225)(208, 212)(209, 214)(211, 222)(213, 220)(219, 228)(226, 227)
g1: (19, 97)
h1: (20, 87)
m1: (6, 98)
n2: (41, 93)
a2: (44, 107)
b2: (11, 108)
c2: (15, 77)
d2: (7, 104)
e2: (49, 84)
f2: (35, 66)
g2: (50, 71)
h2: (29, 57)
m2: (86, 91)
n3: (39, 61)
a3: (42, 58)
b3: (32, 70)
c3: (24, 105)
d3: (34, 52)
e3: (31, 72)
f3: (37, 75)
g3: (9, 103)
h3: (26, 96)
m3: (2, 4)(5, 11)(6, 12)(7, 17)(10, 21)(13, 28)(14, 24)(15, 26)(16, 27)(18, 35)(22, 40)(25, 41)(29, 31)(30, 50)(32, 45)(33, 47)(34, 48)(36, 42)(46, 65)(52, 54)(53, 74)(55, 69)(56, 71)(57, 72)(58, 64)(59, 82)(66, 88)(70, 89)(76, 78)(77, 96)(79, 93)(80, 81)(83, 101)(90, 104)(94, 105)(98, 100)(99, 108)(106, 110)(115, 116)(117, 120)(118, 121)(119, 127)(122, 135)(123, 131)(124, 140)(125, 133)(126, 134)(128, 145)(129, 146)(130, 151)(132, 156)(136, 161)(137, 162)(138, 167)(139, 155)(141, 170)(142, 158)(143, 159)(144, 174)(147, 181)(148, 177)(149, 179)(150, 180)(152, 188)(153, 189)(154, 194)(157, 197)(160, 175)(163, 203)(164, 190)(165, 201)(166, 202)(168, 187)(169, 196)(171, 206)(172, 198)(173, 184)(176, 208)(178, 212)(182, 204)(183, 214)(185, 211)(186, 213)(191, 218)(192, 219)(193, 220)(195, 222)(199, 207)(200, 209)(205, 217)(210, 223)(215, 225)(216, 227)(221, 228)(224, 226)
n4: (2, 110)
a4: (18, 88)
b4: (36, 64)
c4: (21, 83)
d4: (14, 94)
e4: (38, 63)
f4: (13, 80)
g4: (33, 53)
h4: (28, 81)
m4: (73, 92)
n5: (2, 5)(3, 8)(4, 11)(6, 15)(7, 14)(9, 19)(10, 21)(12, 26)(13, 29)(16, 33)(17, 24)(18, 32)(20, 37)(22, 41)(23, 43)(25, 40)(27, 47)(28, 31)(30, 34)(35, 45)(36, 46)(38, 51)(39, 49)(42, 65)(44, 67)(48, 50)(52, 56)(53, 76)(54, 71)(55, 64)(57, 80)(58, 69)(59, 79)(60, 63)(61, 84)(62, 73)(66, 89)(68, 86)(70, 88)(72, 81)(74, 78)(75, 87)(77, 98)(82, 93)(83, 101)(85, 92)(90, 105)(91, 95)(94, 104)(96, 100)(97, 103)(99, 110)(102, 107)(106, 108)(109, 112)(111, 113)(115, 117)(116, 120)(118, 125)(119, 128)(121, 133)(122, 136)(123, 124)(126, 142)(127, 145)(129, 149)(130, 152)(131, 140)(132, 148)(134, 158)(135, 161)(137, 165)(138, 164)(139, 141)(143, 172)(144, 175)(146, 179)(147, 182)(150, 186)(151, 188)(153, 192)(154, 191)(155, 170)(156, 177)(157, 185)(159, 198)(160, 174)(162, 201)(163, 173)(167, 190)(168, 205)(169, 171)(176, 209)(178, 207)(180, 213)(181, 204)(183, 215)(184, 203)(187, 217)(189, 219)(193, 216)(194, 218)(195, 221)(196, 206)(197, 211)(199, 212)(200, 208)(210, 226)(214, 225)(220, 227)(222, 228)(223, 224)
a5: (4, 106)
b5: (17, 90)
c5: (5, 99)
d5: (27, 78)
e5: (25, 79)
f5: (47, 74)
g5: (43, 111)
h5: (12, 100)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 228, 11 ]
228
-1 115 116 117 120
-2 122 115 119 130
-3 121 123 118 131
-4 135 116 127 151
-5 136 117 128 152
-6 137 118 129 153
-7 132 154 124 138
-8 133 124 125 140
-9 155 134 126 139
-10 144 145 160 119
-11 188 145 161 120
-12 121 189 146 162
-13 122 190 147 163
-14 123 191 148 164
-15 165 125 192 149
-16 166 126 193 150
-17 156 167 194 140
-18 157 168 195 141
-19 158 170 141 142
-20 143 169 159 196
-21 127 128 174 175
-22 176 177 199 129
-23 191 151 130 218
-24 177 190 218 131
-25 132 178 200 179
-26 133 179 201 219
-27 220 134 180 202
-28 135 181 203 164
-29 167 136 182 173
-30 137 172 183 217
-31 138 204 161 184
-32 221 139 205 185
-33 166 216 142 186
-34 143 165 187 215
-35 187 222 170 197
-36 223 180 171 185
-37 198 171 172 206
-38 178 212 173 184
-39 144 147 181 174
-40 146 148 207 208
-41 209 156 212 149
-42 210 211 150 206
-43 154 188 194 152
-44 221 189 228 153
-45 155 211 217 228
-46 157 169 213 224
-47 158 202 213 227
-48 168 201 159 225
-49 160 182 204 175
-50 198 214 205 162
-51 199 203 163 207
-52 143 165 187 215
-53 166 216 142 186
-54 168 201 159 225
-55 157 169 213 224
-56 137 172 183 217
-57 167 136 182 173
-58 210 211 150 206
-59 146 148 207 208
-60 199 203 163 207
-61 144 147 181 174
-62 176 214 183 208
-63 178 212 173 184
-64 223 180 171 185
-65 226 196 186 197
-66 187 222 170 197
-67 222 192 195 219
-68 220 224 193 226
-69 226 196 186 197
-70 221 139 205 185
-71 198 214 205 162
-72 138 204 161 184
-73 209 200 225 215
-74 158 202 213 227
-75 198 171 172 206
-76 166 126 193 150
-77 165 125 192 149
-78 220 134 180 202
-79 132 178 200 179
-80 122 190 147 163
-81 135 181 203 164
-82 176 177 199 129
-83 127 128 174 175
-84 160 182 204 175
-85 176 214 183 208
-86 210 223 216 227
-87 143 169 159 196
-88 157 168 195 141
-89 155 211 217 228
-90 156 167 194 140
-91 210 223 216 227
-92 209 200 225 215
-93 209 156 212 149
-94 123 191 148 164
-95 220 224 193 226
-96 133 179 201 219
-97 158 170 141 142
-98 137 118 129 153
-99 136 117 128 152
-100 121 189 146 162
-101 144 145 160 119
-102 222 192 195 219
-103 155 134 126 139
-104 132 154 124 138
-105 177 190 218 131
-106 135 116 127 151
-107 221 189 228 153
-108 188 145 161 120
-109 133 124 125 140
-110 122 115 119 130
-111 154 188 194 152
-112 121 123 118 131
-113 191 151 130 218
-114 115 116 117 120
-115 110 1 2 114
-116 1 4 114 106
-117 99 1 114 5
-118 112 3 6 98
-119 110 2 101 10
-120 11 1 114 108
-121 12 100 112 3
-122 110 2 13 80
-123 112 3 14 94
-124 104 7 8 109
-125 77 15 8 109
-126 103 16 9 76
-127 4 83 106 21
-128 99 5 83 21
-129 22 82 6 98
-130 110 23 2 113
-131 24 112 3 105
-132 79 25 104 7
-133 26 8 96 109
-134 78 103 27 9
-135 4 81 28 106
-136 99 57 5 29
-137 56 6 30 98
-138 104 72 7 31
-139 70 103 9 32
-140 90 17 8 109
-141 88 18 19 97
-142 33 19 53 97
-143 34 52 20 87
-144 101 39 61 10
-145 11 101 108 10
-146 12 100 59 40
-147 13 80 39 61
-148 14 59 94 40
-149 77 15 93 41
-150 58 16 42 76
-151 23 113 4 106
-152 99 111 5 43
-153 44 6 107 98
-154 111 104 7 43
-155 45 89 103 9
-156 90 93 17 41
-157 55 88 46 18
-158 47 19 74 97
-159 48 20 54 87
-160 101 49 84 10
-161 11 72 31 108
-162 12 100 71 50
-163 13 80 60 51
-164 14 81 28 94
-165 77 34 15 52
-166 33 16 53 76
-167 57 90 17 29
-168 88 48 18 54
-169 55 46 20 87
-170 66 35 19 97
-171 36 37 64 75
-172 56 37 30 75
-173 57 38 29 63
-174 39 61 83 21
-175 49 83 84 21
-176 22 82 62 85
-177 22 24 82 105
-178 79 25 38 63
-179 79 25 26 96
-180 78 36 27 64
-181 81 28 39 61
-182 57 49 29 84
-183 56 62 30 85
-184 38 72 63 31
-185 36 70 64 32
-186 33 69 53 65
-187 66 34 35 52
-188 11 111 108 43
-189 44 12 100 107
-190 13 24 80 105
-191 23 14 113 94
-192 77 67 102 15
-193 68 16 95 76
-194 111 90 17 43
-195 88 67 102 18
-196 69 20 65 87
-197 66 35 69 65
-198 37 71 50 75
-199 22 60 82 51
-200 79 25 92 73
-201 26 48 96 54
-202 78 47 27 74
-203 81 60 28 51
-204 49 72 84 31
-205 70 71 50 32
-206 58 37 42 75
-207 59 60 40 51
-208 59 40 62 85
-209 92 93 73 41
-210 58 91 42 86
-211 45 89 58 42
-212 38 93 41 63
-213 55 46 47 74
-214 71 50 62 85
-215 34 92 73 52
-216 33 91 53 86
-217 45 56 89 30
-218 23 24 113 105
-219 67 102 26 96
-220 78 68 27 95
-221 44 70 107 32
-222 66 67 35 102
-223 36 91 64 86
-224 55 46 68 95
-225 48 92 73 54
-226 68 69 95 65
-227 47 91 74 86
-228 44 45 89 107
0

**************