[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 229, 1 ] =
C_229(1,107).
(I) Following is a form readable by MAGMA:
g:=Graph<229|{ {2, 3}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220,
221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209},
{206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194,
195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183},
{180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168,
169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157},
{154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142,
143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131},
{128, 129}, {126, 127}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48,
49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95},
{96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109},
{110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122,
123}, {124, 125}, {1, 2}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209,
210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186},
{181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157,
158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134},
{129, 130}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49,
50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93,
94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121,
122}, {125, 126}, {3, 4}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195,
196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{139, 140}, {131, 132}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {123, 124}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168},
{151, 152}, {135, 136}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103,
104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79,
80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {4, 111}, {16,
123}, {20, 127}, {1, 108}, {3, 110}, {17, 124}, {19, 126}, {2, 109}, {18, 125},
{5, 112}, {7, 114}, {13, 120}, {15, 122}, {6, 113}, {14, 121}, {1, 123}, {4,
126}, {5, 127}, {8, 115}, {12, 119}, {9, 116}, {11, 118}, {2, 124}, {3, 125},
{10, 117}, {191, 192}, {63, 64}, {6, 128}, {71, 193}, {70, 192}, {63, 185}, {62,
184}, {55, 177}, {54, 176}, {47, 169}, {46, 168}, {7, 129}, {14, 136}, {15,
137}, {22, 144}, {23, 145}, {30, 152}, {31, 153}, {38, 160}, {39, 161}, {78,
200}, {79, 201}, {86, 208}, {87, 209}, {94, 216}, {95, 217}, {102, 224}, {103,
225}, {8, 130}, {73, 195}, {72, 194}, {61, 183}, {60, 182}, {57, 179}, {56,
178}, {45, 167}, {9, 131}, {12, 134}, {13, 135}, {24, 146}, {25, 147}, {28,
150}, {29, 151}, {40, 162}, {41, 163}, {44, 166}, {76, 198}, {77, 199}, {88,
210}, {89, 211}, {92, 214}, {93, 215}, {104, 226}, {105, 227}, {10, 132}, {59,
181}, {58, 180}, {11, 133}, {26, 148}, {27, 149}, {42, 164}, {43, 165}, {74,
196}, {75, 197}, {90, 212}, {91, 213}, {106, 228}, {107, 229}, {21, 128}, {63,
170}, {61, 168}, {55, 162}, {53, 160}, {23, 130}, {29, 136}, {31, 138}, {85,
192}, {87, 194}, {93, 200}, {95, 202}, {117, 224}, {119, 226}, {22, 129}, {62,
169}, {54, 161}, {30, 137}, {86, 193}, {94, 201}, {118, 225}, {16, 138}, {53,
175}, {52, 174}, {49, 171}, {48, 170}, {17, 139}, {20, 142}, {21, 143}, {80,
202}, {81, 203}, {84, 206}, {85, 207}, {24, 131}, {60, 167}, {56, 163}, {28,
135}, {88, 195}, {92, 199}, {120, 227}, {25, 132}, {59, 166}, {57, 164}, {27,
134}, {89, 196}, {91, 198}, {121, 228}, {18, 140}, {51, 173}, {50, 172}, {19,
141}, {82, 204}, {83, 205}, {26, 133}, {58, 165}, {90, 197}, {122, 229}, {32,
139}, {52, 159}, {48, 155}, {36, 143}, {96, 203}, {100, 207}, {112, 219}, {116,
223}, {33, 140}, {51, 158}, {49, 156}, {35, 142}, {97, 204}, {99, 206}, {113,
220}, {115, 222}, {34, 141}, {50, 157}, {98, 205}, {114, 221}, {37, 144}, {47,
154}, {39, 146}, {45, 152}, {101, 208}, {103, 210}, {109, 216}, {111, 218}, {38,
145}, {46, 153}, {102, 209}, {110, 217}, {32, 154}, {33, 155}, {36, 158}, {37,
159}, {96, 218}, {97, 219}, {100, 222}, {101, 223}, {40, 147}, {44, 151}, {104,
211}, {108, 215}, {41, 148}, {43, 150}, {105, 212}, {107, 214}, {34, 156}, {35,
157}, {98, 220}, {99, 221}, {42, 149}, {106, 213}, {1, 229}, {64, 171}, {68,
175}, {80, 187}, {84, 191}, {65, 172}, {67, 174}, {81, 188}, {83, 190}, {66,
173}, {82, 189}, {69, 176}, {71, 178}, {77, 184}, {79, 186}, {70, 177}, {78,
185}, {64, 186}, {69, 191}, {68, 190}, {65, 187}, {72, 179}, {76, 183}, {73,
180}, {75, 182}, {66, 188}, {67, 189}, {74, 181}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 123, 229, 108)(3, 16, 228, 215)(4, 138, 227, 93)(5, 31, 226, 200)(6, 153,
225, 78)(7, 46, 224, 185)(8, 168, 223, 63)(9, 61, 222, 170)(10, 183, 221,
48)(11, 76, 220, 155)(12, 198, 219, 33)(13, 91, 218, 140)(14, 213, 217, 18)(15,
106, 216, 125)(17, 121, 214, 110)(19, 136, 212, 95)(20, 29, 211, 202)(21, 151,
210, 80)(22, 44, 209, 187)(23, 166, 208, 65)(24, 59, 207, 172)(25, 181, 206,
50)(26, 74, 205, 157)(27, 196, 204, 35)(28, 89, 203, 142)(30, 104, 201, 127)(32,
119, 199, 112)(34, 134, 197, 97)(36, 149, 195, 82)(37, 42, 194, 189)(38, 164,
193, 67)(39, 57, 192, 174)(40, 179, 191, 52)(41, 72, 190, 159)(43, 87, 188,
144)(45, 102, 186, 129)(47, 117, 184, 114)(49, 132, 182, 99)(51, 147, 180,
84)(53, 162, 178, 69)(54, 55, 177, 176)(56, 70, 175, 161)(58, 85, 173, 146)(60,
100, 171, 131)(62, 115, 169, 116)(64, 130, 167, 101)(66, 145, 165, 86)(68, 160,
163, 71)(73, 83, 158, 148)(75, 98, 156, 133)(77, 113, 154, 118)(79, 128, 152,
103)(81, 143, 150, 88)(90, 96, 141, 135)(92, 111, 139, 120)(94, 126, 137,
105)(107, 109, 124, 122) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229)
C4[ 229, 1 ]
229
-1 2 123 108 229
-2 1 3 124 109
-3 110 2 4 125
-4 111 3 5 126
-5 112 4 6 127
-6 113 5 7 128
-7 114 6 8 129
-8 115 7 9 130
-9 116 8 10 131
-10 11 132 117 9
-11 12 133 118 10
-12 11 13 134 119
-13 12 14 135 120
-14 121 13 15 136
-15 122 14 16 137
-16 123 15 17 138
-17 124 16 18 139
-18 125 17 19 140
-19 126 18 20 141
-20 127 19 21 142
-21 22 143 128 20
-22 23 144 129 21
-23 22 24 145 130
-24 23 25 146 131
-25 132 24 26 147
-26 133 25 27 148
-27 134 26 28 149
-28 135 27 29 150
-29 136 28 30 151
-30 137 29 31 152
-31 138 30 32 153
-32 33 154 139 31
-33 34 155 140 32
-34 33 35 156 141
-35 34 36 157 142
-36 143 35 37 158
-37 144 36 38 159
-38 145 37 39 160
-39 146 38 40 161
-40 147 39 41 162
-41 148 40 42 163
-42 149 41 43 164
-43 44 165 150 42
-44 45 166 151 43
-45 44 46 167 152
-46 45 47 168 153
-47 154 46 48 169
-48 155 47 49 170
-49 156 48 50 171
-50 157 49 51 172
-51 158 50 52 173
-52 159 51 53 174
-53 160 52 54 175
-54 55 176 161 53
-55 56 177 162 54
-56 55 57 178 163
-57 56 58 179 164
-58 165 57 59 180
-59 166 58 60 181
-60 167 59 61 182
-61 168 60 62 183
-62 169 61 63 184
-63 170 62 64 185
-64 171 63 65 186
-65 66 187 172 64
-66 67 188 173 65
-67 66 68 189 174
-68 67 69 190 175
-69 176 68 70 191
-70 177 69 71 192
-71 178 70 72 193
-72 179 71 73 194
-73 180 72 74 195
-74 181 73 75 196
-75 182 74 76 197
-76 77 198 183 75
-77 78 199 184 76
-78 77 79 200 185
-79 78 80 201 186
-80 187 79 81 202
-81 188 80 82 203
-82 189 81 83 204
-83 190 82 84 205
-84 191 83 85 206
-85 192 84 86 207
-86 193 85 87 208
-87 88 209 194 86
-88 89 210 195 87
-89 88 90 211 196
-90 89 91 212 197
-91 198 90 92 213
-92 199 91 93 214
-93 200 92 94 215
-94 201 93 95 216
-95 202 94 96 217
-96 203 95 97 218
-97 204 96 98 219
-98 99 220 205 97
-99 100 221 206 98
-100 99 101 222 207
-101 100 102 223 208
-102 209 101 103 224
-103 210 102 104 225
-104 211 103 105 226
-105 212 104 106 227
-106 213 105 107 228
-107 214 106 108 229
-108 1 215 107 109
-109 110 2 216 108
-110 111 3 217 109
-111 110 112 4 218
-112 111 113 5 219
-113 220 112 114 6
-114 221 113 115 7
-115 222 114 116 8
-116 223 115 117 9
-117 224 116 118 10
-118 11 225 117 119
-119 12 226 118 120
-120 121 13 227 119
-121 122 14 228 120
-122 121 123 15 229
-123 1 122 124 16
-124 2 123 125 17
-125 3 124 126 18
-126 4 125 127 19
-127 5 126 128 20
-128 6 127 129 21
-129 22 7 128 130
-130 23 8 129 131
-131 132 24 9 130
-132 133 25 10 131
-133 11 132 134 26
-134 12 133 135 27
-135 13 134 136 28
-136 14 135 137 29
-137 15 136 138 30
-138 16 137 139 31
-139 17 138 140 32
-140 33 18 139 141
-141 34 19 140 142
-142 143 35 20 141
-143 144 36 21 142
-144 22 143 145 37
-145 23 144 146 38
-146 24 145 147 39
-147 25 146 148 40
-148 26 147 149 41
-149 27 148 150 42
-150 28 149 151 43
-151 44 29 150 152
-152 45 30 151 153
-153 154 46 31 152
-154 155 47 32 153
-155 33 154 156 48
-156 34 155 157 49
-157 35 156 158 50
-158 36 157 159 51
-159 37 158 160 52
-160 38 159 161 53
-161 39 160 162 54
-162 55 40 161 163
-163 56 41 162 164
-164 165 57 42 163
-165 166 58 43 164
-166 44 165 167 59
-167 45 166 168 60
-168 46 167 169 61
-169 47 168 170 62
-170 48 169 171 63
-171 49 170 172 64
-172 50 171 173 65
-173 66 51 172 174
-174 67 52 173 175
-175 176 68 53 174
-176 177 69 54 175
-177 55 176 178 70
-178 56 177 179 71
-179 57 178 180 72
-180 58 179 181 73
-181 59 180 182 74
-182 60 181 183 75
-183 61 182 184 76
-184 77 62 183 185
-185 78 63 184 186
-186 187 79 64 185
-187 188 80 65 186
-188 66 187 189 81
-189 67 188 190 82
-190 68 189 191 83
-191 69 190 192 84
-192 70 191 193 85
-193 71 192 194 86
-194 72 193 195 87
-195 88 73 194 196
-196 89 74 195 197
-197 198 90 75 196
-198 199 91 76 197
-199 77 198 200 92
-200 78 199 201 93
-201 79 200 202 94
-202 80 201 203 95
-203 81 202 204 96
-204 82 203 205 97
-205 83 204 206 98
-206 99 84 205 207
-207 100 85 206 208
-208 209 101 86 207
-209 210 102 87 208
-210 88 209 211 103
-211 89 210 212 104
-212 90 211 213 105
-213 91 212 214 106
-214 92 213 215 107
-215 93 214 216 108
-216 94 215 217 109
-217 110 95 216 218
-218 111 96 217 219
-219 220 112 97 218
-220 221 113 98 219
-221 99 220 222 114
-222 100 221 223 115
-223 101 222 224 116
-224 102 223 225 117
-225 103 224 226 118
-226 104 225 227 119
-227 105 226 228 120
-228 121 106 227 229
-229 1 122 107 228
0