[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 230, 2 ] =
C_230(1,91).
(I) Following is a form readable by MAGMA:
g:=Graph<230|{ {2, 3}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220,
221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209},
{206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194,
195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183},
{180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168,
169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157},
{154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142,
143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {74, 75}, {72, 73}, {70,
71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54,
55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27},
{28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43},
{44, 45}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89},
{90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104,
105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117},
{118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130,
131}, {132, 133}, {1, 2}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213,
214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190},
{185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161,
162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138},
{133, 134}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49,
50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93,
94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121,
122}, {125, 126}, {129, 130}, {3, 4}, {227, 228}, {219, 220}, {211, 212}, {203,
204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156},
{147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {123, 124}, {131, 132}, {7, 8}, {215, 216}, {199, 200}, {183, 184},
{167, 168}, {151, 152}, {135, 136}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87,
88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47,
48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {4, 95},
{32, 123}, {36, 127}, {128, 219}, {132, 223}, {1, 92}, {3, 94}, {33, 124}, {35,
126}, {129, 220}, {131, 222}, {2, 93}, {34, 125}, {130, 221}, {5, 96}, {135,
226}, {133, 224}, {7, 98}, {13, 104}, {15, 106}, {21, 112}, {23, 114}, {29,
120}, {31, 122}, {6, 97}, {134, 225}, {14, 105}, {22, 113}, {30, 121}, {8, 99},
{136, 227}, {12, 103}, {24, 115}, {28, 119}, {9, 100}, {139, 230}, {137, 228},
{11, 102}, {25, 116}, {27, 118}, {10, 101}, {138, 229}, {26, 117}, {16, 107},
{20, 111}, {17, 108}, {19, 110}, {18, 109}, {191, 192}, {63, 64}, {4, 143}, {68,
207}, {64, 203}, {52, 191}, {48, 187}, {16, 155}, {20, 159}, {32, 171}, {36,
175}, {80, 219}, {84, 223}, {1, 140}, {67, 206}, {65, 204}, {51, 190}, {49,
188}, {3, 142}, {17, 156}, {19, 158}, {33, 172}, {35, 174}, {81, 220}, {83,
222}, {2, 141}, {66, 205}, {50, 189}, {18, 157}, {34, 173}, {82, 221}, {5, 144},
{71, 210}, {69, 208}, {47, 186}, {45, 184}, {7, 146}, {13, 152}, {15, 154}, {37,
176}, {39, 178}, {77, 216}, {79, 218}, {6, 145}, {70, 209}, {46, 185}, {14,
153}, {38, 177}, {78, 217}, {8, 147}, {72, 211}, {12, 151}, {40, 179}, {44,
183}, {76, 215}, {9, 148}, {73, 212}, {11, 150}, {41, 180}, {43, 182}, {75,
214}, {10, 149}, {74, 213}, {42, 181}, {37, 128}, {63, 154}, {61, 152}, {55,
146}, {53, 144}, {47, 138}, {45, 136}, {39, 130}, {101, 192}, {103, 194}, {109,
200}, {111, 202}, {117, 208}, {119, 210}, {125, 216}, {127, 218}, {38, 129},
{62, 153}, {54, 145}, {46, 137}, {102, 193}, {110, 201}, {118, 209}, {126, 217},
{40, 131}, {60, 151}, {56, 147}, {44, 135}, {104, 195}, {108, 199}, {120, 211},
{124, 215}, {41, 132}, {59, 150}, {57, 148}, {43, 134}, {105, 196}, {107, 198},
{121, 212}, {123, 214}, {42, 133}, {58, 149}, {106, 197}, {122, 213}, {21, 160},
{23, 162}, {29, 168}, {31, 170}, {85, 224}, {87, 226}, {22, 161}, {30, 169},
{86, 225}, {24, 163}, {52, 143}, {48, 139}, {28, 167}, {88, 227}, {112, 203},
{116, 207}, {25, 164}, {51, 142}, {49, 140}, {27, 166}, {89, 228}, {91, 230},
{113, 204}, {115, 206}, {26, 165}, {50, 141}, {90, 229}, {114, 205}, {64, 155},
{68, 159}, {96, 187}, {100, 191}, {65, 156}, {67, 158}, {97, 188}, {99, 190},
{66, 157}, {98, 189}, {69, 160}, {71, 162}, {77, 168}, {79, 170}, {85, 176},
{87, 178}, {93, 184}, {95, 186}, {1, 230}, {70, 161}, {78, 169}, {86, 177}, {94,
185}, {72, 163}, {76, 167}, {88, 179}, {92, 183}, {73, 164}, {75, 166}, {89,
180}, {91, 182}, {74, 165}, {90, 181}, {53, 192}, {63, 202}, {61, 200}, {55,
194}, {54, 193}, {62, 201}, {56, 195}, {60, 199}, {80, 171}, {84, 175}, {57,
196}, {59, 198}, {81, 172}, {83, 174}, {58, 197}, {82, 173}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 92)(3, 183)(4, 44)(5, 135)(6, 226)(7, 87)(8, 178)(9, 39)(10, 130)(11,
221)(12, 82)(13, 173)(14, 34)(15, 125)(16, 216)(17, 77)(18, 168)(19, 29)(20,
120)(21, 211)(22, 72)(23, 163)(25, 115)(26, 206)(27, 67)(28, 158)(30, 110)(31,
201)(32, 62)(33, 153)(35, 105)(36, 196)(37, 57)(38, 148)(40, 100)(41, 191)(42,
52)(43, 143)(45, 95)(46, 186)(48, 138)(49, 229)(50, 90)(51, 181)(53, 133)(54,
224)(55, 85)(56, 176)(58, 128)(59, 219)(60, 80)(61, 171)(63, 123)(64, 214)(65,
75)(66, 166)(68, 118)(69, 209)(71, 161)(73, 113)(74, 204)(76, 156)(78, 108)(79,
199)(81, 151)(83, 103)(84, 194)(86, 146)(88, 98)(89, 189)(91, 141)(94, 184)(96,
136)(97, 227)(99, 179)(101, 131)(102, 222)(104, 174)(106, 126)(107, 217)(109,
169)(111, 121)(112, 212)(114, 164)(117, 207)(119, 159)(122, 202)(124, 154)(127,
197)(129, 149)(132, 192)(134, 144)(137, 187)(140, 230)(142, 182)(145, 225)(147,
177)(150, 220)(152, 172)(155, 215)(157, 167)(160, 210)(165, 205)(170, 200)(175,
195)(180, 190)(188, 228)(193, 223)(198, 218)(203, 213) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 140)(3, 49)(4, 188)(5, 97)(7, 145)(8, 54)(9, 193)(10, 102)(12, 150)(13,
59)(14, 198)(15, 107)(17, 155)(18, 64)(19, 203)(20, 112)(22, 160)(23, 69)(24,
208)(25, 117)(27, 165)(28, 74)(29, 213)(30, 122)(32, 170)(33, 79)(34, 218)(35,
127)(37, 175)(38, 84)(39, 223)(40, 132)(42, 180)(43, 89)(44, 228)(45, 137)(47,
185)(48, 94)(50, 142)(52, 190)(53, 99)(55, 147)(57, 195)(58, 104)(60, 152)(62,
200)(63, 109)(65, 157)(67, 205)(68, 114)(70, 162)(72, 210)(73, 119)(75, 167)(77,
215)(78, 124)(80, 172)(82, 220)(83, 129)(85, 177)(87, 225)(88, 134)(90, 182)(92,
230)(93, 139)(95, 187)(98, 144)(100, 192)(103, 149)(105, 197)(108, 154)(110,
202)(113, 159)(115, 207)(118, 164)(120, 212)(123, 169)(125, 217)(128, 174)(130,
222)(133, 179)(135, 227)(138, 184)(143, 189)(148, 194)(153, 199)(158, 204)(163,
209)(168, 214)(173, 219)(178, 224)(183, 229)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230)
C4[ 230, 2 ]
230
-1 2 92 140 230
-2 1 3 93 141
-3 2 4 94 142
-4 143 3 5 95
-5 144 4 6 96
-6 145 5 7 97
-7 146 6 8 98
-8 99 147 7 9
-9 100 148 8 10
-10 11 101 149 9
-11 12 102 150 10
-12 11 13 103 151
-13 12 14 104 152
-14 13 15 105 153
-15 154 14 16 106
-16 155 15 17 107
-17 156 16 18 108
-18 157 17 19 109
-19 110 158 18 20
-20 111 159 19 21
-21 22 112 160 20
-22 23 113 161 21
-23 22 24 114 162
-24 23 25 115 163
-25 24 26 116 164
-26 165 25 27 117
-27 166 26 28 118
-28 167 27 29 119
-29 168 28 30 120
-30 121 169 29 31
-31 122 170 30 32
-32 33 123 171 31
-33 34 124 172 32
-34 33 35 125 173
-35 34 36 126 174
-36 35 37 127 175
-37 176 36 38 128
-38 177 37 39 129
-39 178 38 40 130
-40 179 39 41 131
-41 132 180 40 42
-42 133 181 41 43
-43 44 134 182 42
-44 45 135 183 43
-45 44 46 136 184
-46 45 47 137 185
-47 46 48 138 186
-48 187 47 49 139
-49 188 48 50 140
-50 189 49 51 141
-51 190 50 52 142
-52 143 191 51 53
-53 144 192 52 54
-54 55 145 193 53
-55 56 146 194 54
-56 55 57 147 195
-57 56 58 148 196
-58 57 59 149 197
-59 198 58 60 150
-60 199 59 61 151
-61 200 60 62 152
-62 201 61 63 153
-63 154 202 62 64
-64 155 203 63 65
-65 66 156 204 64
-66 67 157 205 65
-67 66 68 158 206
-68 67 69 159 207
-69 68 70 160 208
-70 209 69 71 161
-71 210 70 72 162
-72 211 71 73 163
-73 212 72 74 164
-74 165 213 73 75
-75 166 214 74 76
-76 77 167 215 75
-77 78 168 216 76
-78 77 79 169 217
-79 78 80 170 218
-80 79 81 171 219
-81 220 80 82 172
-82 221 81 83 173
-83 222 82 84 174
-84 223 83 85 175
-85 176 224 84 86
-86 177 225 85 87
-87 88 178 226 86
-88 89 179 227 87
-89 88 90 180 228
-90 89 91 181 229
-91 90 92 182 230
-92 1 91 93 183
-93 2 92 94 184
-94 3 93 95 185
-95 4 94 96 186
-96 187 5 95 97
-97 188 6 96 98
-98 99 189 7 97
-99 100 190 8 98
-100 99 101 191 9
-101 100 102 192 10
-102 11 101 103 193
-103 12 102 104 194
-104 13 103 105 195
-105 14 104 106 196
-106 15 105 107 197
-107 198 16 106 108
-108 199 17 107 109
-109 110 200 18 108
-110 111 201 19 109
-111 110 112 202 20
-112 111 113 203 21
-113 22 112 114 204
-114 23 113 115 205
-115 24 114 116 206
-116 25 115 117 207
-117 26 116 118 208
-118 209 27 117 119
-119 210 28 118 120
-120 121 211 29 119
-121 122 212 30 120
-122 121 123 213 31
-123 122 124 214 32
-124 33 123 125 215
-125 34 124 126 216
-126 35 125 127 217
-127 36 126 128 218
-128 37 127 129 219
-129 220 38 128 130
-130 221 39 129 131
-131 132 222 40 130
-132 133 223 41 131
-133 132 134 224 42
-134 133 135 225 43
-135 44 134 136 226
-136 45 135 137 227
-137 46 136 138 228
-138 47 137 139 229
-139 48 138 140 230
-140 1 49 139 141
-141 2 50 140 142
-142 143 3 51 141
-143 144 4 52 142
-144 143 145 5 53
-145 144 146 6 54
-146 55 145 147 7
-147 56 146 148 8
-148 57 147 149 9
-149 58 148 150 10
-150 11 59 149 151
-151 12 60 150 152
-152 13 61 151 153
-153 154 14 62 152
-154 155 15 63 153
-155 154 156 16 64
-156 155 157 17 65
-157 66 156 158 18
-158 67 157 159 19
-159 68 158 160 20
-160 69 159 161 21
-161 22 70 160 162
-162 23 71 161 163
-163 24 72 162 164
-164 165 25 73 163
-165 166 26 74 164
-166 165 167 27 75
-167 166 168 28 76
-168 77 167 169 29
-169 78 168 170 30
-170 79 169 171 31
-171 80 170 172 32
-172 33 81 171 173
-173 34 82 172 174
-174 35 83 173 175
-175 176 36 84 174
-176 177 37 85 175
-177 176 178 38 86
-178 177 179 39 87
-179 88 178 180 40
-180 89 179 181 41
-181 90 180 182 42
-182 91 181 183 43
-183 44 92 182 184
-184 45 93 183 185
-185 46 94 184 186
-186 187 47 95 185
-187 188 48 96 186
-188 187 189 49 97
-189 188 190 50 98
-190 99 189 191 51
-191 100 190 192 52
-192 101 191 193 53
-193 102 192 194 54
-194 55 103 193 195
-195 56 104 194 196
-196 57 105 195 197
-197 198 58 106 196
-198 199 59 107 197
-199 198 200 60 108
-200 199 201 61 109
-201 110 200 202 62
-202 111 201 203 63
-203 112 202 204 64
-204 113 203 205 65
-205 66 114 204 206
-206 67 115 205 207
-207 68 116 206 208
-208 209 69 117 207
-209 210 70 118 208
-210 209 211 71 119
-211 210 212 72 120
-212 121 211 213 73
-213 122 212 214 74
-214 123 213 215 75
-215 124 214 216 76
-216 77 125 215 217
-217 78 126 216 218
-218 79 127 217 219
-219 220 80 128 218
-220 221 81 129 219
-221 220 222 82 130
-222 221 223 83 131
-223 132 222 224 84
-224 133 223 225 85
-225 134 224 226 86
-226 135 225 227 87
-227 88 136 226 228
-228 89 137 227 229
-229 90 138 228 230
-230 1 91 139 229
0