C4graphGraph forms for C4 [ 232, 10 ] = PL(Br(4,29;12))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 232, 10 ] = PL(Br(4,29;12)).

(I) Following is a form readable by MAGMA:

g:=Graph<232|{ {88, 120}, {89, 121}, {89, 120}, {90, 121}, {89, 124}, {90, 124}, {91, 125}, {90, 125}, {89, 117}, {88, 117}, {76, 124}, {77, 124}, {77, 123}, {76, 123}, {65, 127}, {64, 127}, {59, 120}, {60, 120}, {60, 119}, {59, 119}, {32, 122}, {32, 123}, {32, 126}, {33, 127}, {32, 127}, {33, 126}, {31, 123}, {31, 122}, {18, 122}, {31, 119}, {30, 118}, {19, 122}, {31, 118}, {30, 119}, {19, 121}, {18, 121}, {1, 117}, {2, 118}, {1, 118}, {2, 117}, {6, 126}, {7, 126}, {7, 125}, {6, 125}, {21, 149}, {43, 171}, {22, 150}, {59, 187}, {43, 170}, {44, 174}, {45, 175}, {21, 150}, {45, 174}, {44, 175}, {22, 149}, {64, 195}, {26, 158}, {64, 196}, {27, 158}, {85, 208}, {27, 157}, {86, 208}, {44, 170}, {26, 157}, {44, 171}, {59, 188}, {42, 162}, {68, 204}, {12, 133}, {42, 163}, {69, 204}, {12, 134}, {48, 186}, {41, 163}, {41, 162}, {48, 187}, {75, 192}, {42, 166}, {43, 167}, {76, 192}, {11, 134}, {43, 166}, {42, 167}, {11, 133}, {49, 191}, {48, 190}, {69, 203}, {48, 191}, {49, 190}, {68, 203}, {9, 153}, {116, 228}, {10, 154}, {116, 229}, {78, 220}, {115, 225}, {114, 224}, {9, 154}, {115, 224}, {10, 153}, {79, 220}, {5, 145}, {47, 187}, {29, 137}, {60, 168}, {79, 219}, {4, 145}, {116, 225}, {47, 186}, {28, 137}, {23, 130}, {61, 168}, {78, 219}, {4, 146}, {81, 199}, {28, 138}, {23, 129}, {5, 146}, {115, 228}, {29, 138}, {80, 199}, {46, 182}, {80, 200}, {47, 183}, {24, 129}, {86, 207}, {81, 200}, {47, 182}, {46, 183}, {74, 211}, {24, 130}, {85, 207}, {61, 167}, {73, 211}, {60, 167}, {17, 141}, {116, 232}, {46, 178}, {67, 223}, {16, 141}, {46, 179}, {66, 223}, {73, 212}, {16, 142}, {45, 179}, {74, 212}, {17, 142}, {45, 178}, {34, 130}, {71, 231}, {72, 232}, {34, 131}, {112, 209}, {109, 204}, {33, 131}, {111, 205}, {110, 204}, {66, 224}, {33, 130}, {110, 205}, {67, 224}, {2, 166}, {113, 213}, {112, 212}, {109, 201}, {108, 200}, {35, 135}, {34, 134}, {29, 185}, {3, 166}, {112, 213}, {109, 200}, {35, 134}, {34, 135}, {8, 173}, {3, 165}, {8, 174}, {2, 165}, {110, 201}, {29, 186}, {25, 177}, {113, 217}, {112, 216}, {109, 197}, {108, 196}, {35, 139}, {7, 174}, {113, 216}, {108, 197}, {35, 138}, {24, 177}, {7, 173}, {107, 193}, {106, 192}, {37, 143}, {36, 142}, {24, 178}, {62, 148}, {25, 178}, {114, 217}, {107, 192}, {37, 142}, {36, 143}, {63, 148}, {14, 162}, {18, 190}, {17, 189}, {63, 147}, {15, 162}, {113, 220}, {108, 193}, {62, 147}, {15, 161}, {115, 221}, {114, 220}, {36, 138}, {14, 161}, {114, 221}, {107, 196}, {36, 139}, {18, 189}, {17, 190}, {71, 232}, {72, 231}, {38, 150}, {88, 232}, {84, 228}, {83, 227}, {39, 151}, {38, 151}, {39, 150}, {40, 154}, {40, 155}, {38, 146}, {38, 147}, {37, 147}, {41, 159}, {40, 158}, {37, 146}, {84, 227}, {83, 228}, {41, 158}, {40, 159}, {1, 185}, {13, 181}, {12, 181}, {19, 170}, {12, 182}, {19, 169}, {1, 186}, {111, 212}, {13, 182}, {39, 155}, {20, 169}, {88, 229}, {39, 154}, {20, 170}, {111, 209}, {110, 208}, {111, 208}, {10, 202}, {101, 165}, {100, 164}, {64, 128}, {11, 202}, {100, 165}, {16, 209}, {65, 128}, {70, 135}, {11, 201}, {99, 161}, {98, 160}, {16, 210}, {69, 135}, {10, 201}, {99, 160}, {5, 193}, {6, 194}, {75, 143}, {74, 143}, {100, 161}, {5, 194}, {99, 164}, {6, 193}, {80, 151}, {80, 152}, {101, 172}, {85, 159}, {103, 173}, {102, 172}, {84, 159}, {102, 173}, {95, 148}, {21, 217}, {101, 169}, {100, 168}, {20, 217}, {101, 168}, {69, 136}, {20, 218}, {95, 145}, {94, 144}, {70, 136}, {21, 218}, {102, 169}, {95, 144}, {22, 198}, {105, 185}, {104, 184}, {4, 213}, {105, 184}, {93, 140}, {82, 131}, {28, 205}, {23, 198}, {4, 214}, {95, 141}, {94, 140}, {81, 131}, {28, 206}, {23, 197}, {22, 197}, {106, 185}, {103, 180}, {94, 141}, {9, 221}, {93, 137}, {92, 136}, {3, 214}, {105, 188}, {93, 136}, {81, 132}, {27, 206}, {8, 221}, {3, 213}, {107, 189}, {106, 188}, {103, 177}, {102, 176}, {82, 132}, {27, 205}, {8, 222}, {9, 222}, {106, 189}, {103, 176}, {94, 137}, {79, 152}, {58, 226}, {93, 133}, {92, 132}, {67, 155}, {68, 156}, {79, 151}, {58, 227}, {104, 177}, {92, 133}, {57, 227}, {91, 129}, {90, 128}, {86, 140}, {74, 144}, {57, 226}, {91, 128}, {87, 140}, {75, 144}, {58, 230}, {105, 181}, {104, 180}, {87, 139}, {15, 210}, {104, 181}, {92, 129}, {86, 139}, {58, 231}, {15, 209}, {67, 156}, {91, 132}, {68, 155}, {54, 214}, {83, 179}, {55, 215}, {54, 215}, {82, 179}, {55, 214}, {77, 172}, {56, 218}, {78, 172}, {56, 219}, {54, 210}, {54, 211}, {61, 216}, {78, 171}, {53, 211}, {82, 180}, {56, 222}, {57, 223}, {62, 216}, {77, 171}, {53, 210}, {83, 180}, {56, 223}, {57, 222}, {13, 229}, {14, 230}, {62, 215}, {61, 215}, {73, 163}, {13, 230}, {87, 188}, {14, 229}, {72, 163}, {55, 219}, {87, 187}, {72, 164}, {55, 218}, {66, 175}, {73, 164}, {65, 175}, {50, 194}, {71, 183}, {50, 195}, {96, 145}, {65, 176}, {70, 183}, {49, 195}, {66, 176}, {49, 194}, {76, 191}, {50, 198}, {97, 149}, {96, 148}, {84, 160}, {51, 199}, {75, 191}, {50, 199}, {96, 149}, {85, 160}, {51, 198}, {25, 225}, {97, 153}, {96, 152}, {51, 203}, {30, 230}, {26, 226}, {30, 231}, {97, 152}, {51, 202}, {52, 206}, {53, 207}, {25, 226}, {98, 153}, {52, 207}, {26, 225}, {53, 206}, {63, 196}, {63, 195}, {97, 156}, {52, 202}, {99, 157}, {98, 156}, {70, 184}, {52, 203}, {98, 157}, {71, 184} }>;

(II) A more general form is to represent the graph as the orbit of {88, 120} under the group generated by the following permutations:

a: (1, 30, 13, 47)(2, 58, 12, 48)(3, 57, 11, 49)(4, 56, 10, 50)(5, 55, 9, 51)(6, 54, 8, 52)(7, 53)(14, 46, 29, 31)(15, 45, 28, 32)(16, 44, 27, 33)(17, 43, 26, 34)(18, 42, 25, 35)(19, 41, 24, 36)(20, 40, 23, 37)(21, 39, 22, 38)(59, 88, 71, 105)(60, 116, 70, 106)(61, 115, 69, 107)(62, 114, 68, 108)(63, 113, 67, 109)(64, 112, 66, 110)(65, 111)(72, 104, 87, 89)(73, 103, 86, 90)(74, 102, 85, 91)(75, 101, 84, 92)(76, 100, 83, 93)(77, 99, 82, 94)(78, 98, 81, 95)(79, 97, 80, 96)(117, 231, 181, 187)(118, 230, 182, 186)(119, 229, 183, 185)(120, 232, 184, 188)(121, 163, 177, 139)(122, 162, 178, 138)(123, 161, 179, 137)(124, 164, 180, 140)(125, 211, 173, 207)(126, 210, 174, 206)(127, 209, 175, 205)(128, 212, 176, 208)(129, 143, 169, 159)(130, 142, 170, 158)(131, 141, 171, 157)(132, 144, 172, 160)(133, 191, 165, 227)(134, 190, 166, 226)(135, 189, 167, 225)(136, 192, 168, 228)(145, 219, 153, 199)(146, 218, 154, 198)(147, 217, 155, 197)(148, 220, 156, 200)(149, 151)(193, 215, 221, 203)(194, 214, 222, 202)(195, 213, 223, 201)(196, 216, 224, 204)
b: (2, 29)(3, 28)(4, 27)(5, 26)(6, 25)(7, 24)(8, 23)(9, 22)(10, 21)(11, 20)(12, 19)(13, 18)(14, 17)(15, 16)(30, 48)(31, 47)(32, 46)(33, 45)(34, 44)(35, 43)(36, 42)(37, 41)(38, 40)(49, 58)(50, 57)(51, 56)(52, 55)(53, 54)(60, 87)(61, 86)(62, 85)(63, 84)(64, 83)(65, 82)(66, 81)(67, 80)(68, 79)(69, 78)(70, 77)(71, 76)(72, 75)(73, 74)(88, 106)(89, 105)(90, 104)(91, 103)(92, 102)(93, 101)(94, 100)(95, 99)(96, 98)(107, 116)(108, 115)(109, 114)(110, 113)(111, 112)(117, 185)(118, 186)(119, 187)(120, 188)(121, 181)(122, 182)(123, 183)(124, 184)(125, 177)(126, 178)(127, 179)(128, 180)(129, 173)(130, 174)(131, 175)(132, 176)(133, 169)(134, 170)(135, 171)(136, 172)(137, 165)(138, 166)(139, 167)(140, 168)(141, 161)(142, 162)(143, 163)(144, 164)(145, 157)(146, 158)(147, 159)(148, 160)(149, 153)(150, 154)(151, 155)(152, 156)(189, 229)(190, 230)(191, 231)(192, 232)(193, 225)(194, 226)(195, 227)(196, 228)(197, 221)(198, 222)(199, 223)(200, 224)(201, 217)(202, 218)(203, 219)(204, 220)(205, 213)(206, 214)(207, 215)(208, 216)
c: (30, 88)(31, 89)(32, 90)(33, 91)(34, 92)(35, 93)(36, 94)(37, 95)(38, 96)(39, 97)(40, 98)(41, 99)(42, 100)(43, 101)(44, 102)(45, 103)(46, 104)(47, 105)(48, 106)(49, 107)(50, 108)(51, 109)(52, 110)(53, 111)(54, 112)(55, 113)(56, 114)(57, 115)(58, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29)(30, 42, 54, 37, 49, 32, 44, 56, 39, 51, 34, 46, 58, 41, 53, 36, 48, 31, 43, 55, 38, 50, 33, 45, 57, 40, 52, 35, 47)(59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87)(88, 100, 112, 95, 107, 90, 102, 114, 97, 109, 92, 104, 116, 99, 111, 94, 106, 89, 101, 113, 96, 108, 91, 103, 115, 98, 110, 93, 105)(117, 165, 213, 145, 193, 125, 173, 221, 153, 201, 133, 181, 229, 161, 209, 141, 189, 121, 169, 217, 149, 197, 129, 177, 225, 157, 205, 137, 185)(118, 166, 214, 146, 194, 126, 174, 222, 154, 202, 134, 182, 230, 162, 210, 142, 190, 122, 170, 218, 150, 198, 130, 178, 226, 158, 206, 138, 186)(119, 167, 215, 147, 195, 127, 175, 223, 155, 203, 135, 183, 231, 163, 211, 143, 191, 123, 171, 219, 151, 199, 131, 179, 227, 159, 207, 139, 187)(120, 168, 216, 148, 196, 128, 176, 224, 156, 204, 136, 184, 232, 164, 212, 144, 192, 124, 172, 220, 152, 200, 132, 180, 228, 160, 208, 140, 188)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 232, 10 ]
232
-1 117 118 185 186
-2 165 166 117 118
-3 165 166 213 214
-4 145 146 213 214
-5 145 146 193 194
-6 125 126 193 194
-7 125 126 173 174
-8 221 222 173 174
-9 154 221 222 153
-10 154 201 202 153
-11 133 134 201 202
-12 133 134 181 182
-13 181 182 229 230
-14 161 162 229 230
-15 209 210 161 162
-16 209 210 141 142
-17 189 190 141 142
-18 121 122 189 190
-19 121 122 169 170
-20 169 170 217 218
-21 149 150 217 218
-22 198 149 150 197
-23 198 129 130 197
-24 177 178 129 130
-25 177 178 225 226
-26 157 158 225 226
-27 157 158 205 206
-28 137 138 205 206
-29 137 138 185 186
-30 231 118 119 230
-31 122 123 118 119
-32 122 123 126 127
-33 126 127 130 131
-34 134 135 130 131
-35 134 135 138 139
-36 143 138 139 142
-37 143 146 147 142
-38 146 147 150 151
-39 154 155 150 151
-40 154 155 158 159
-41 158 159 162 163
-42 166 167 162 163
-43 166 167 170 171
-44 170 171 174 175
-45 178 179 174 175
-46 178 179 182 183
-47 187 182 183 186
-48 187 190 191 186
-49 190 191 194 195
-50 198 199 194 195
-51 198 199 202 203
-52 202 203 206 207
-53 210 211 206 207
-54 210 211 214 215
-55 214 215 218 219
-56 222 223 218 219
-57 222 223 226 227
-58 231 226 227 230
-59 187 188 119 120
-60 167 168 119 120
-61 167 168 215 216
-62 147 148 215 216
-63 147 148 195 196
-64 127 128 195 196
-65 176 127 128 175
-66 176 223 224 175
-67 155 156 223 224
-68 155 156 203 204
-69 135 136 203 204
-70 135 136 183 184
-71 231 232 183 184
-72 231 232 163 164
-73 211 212 163 164
-74 143 144 211 212
-75 143 144 191 192
-76 123 124 191 192
-77 123 124 171 172
-78 220 171 172 219
-79 220 151 152 219
-80 199 200 151 152
-81 132 199 200 131
-82 132 179 180 131
-83 179 180 227 228
-84 159 160 227 228
-85 159 160 207 208
-86 139 140 207 208
-87 187 188 139 140
-88 232 117 229 120
-89 121 124 117 120
-90 121 124 125 128
-91 132 125 128 129
-92 132 133 136 129
-93 133 136 137 140
-94 144 137 140 141
-95 144 145 148 141
-96 145 148 149 152
-97 156 149 152 153
-98 156 157 160 153
-99 157 160 161 164
-100 165 168 161 164
-101 165 168 169 172
-102 176 169 172 173
-103 176 177 180 173
-104 177 180 181 184
-105 188 181 184 185
-106 188 189 192 185
-107 189 192 193 196
-108 200 193 196 197
-109 200 201 204 197
-110 201 204 205 208
-111 209 212 205 208
-112 209 212 213 216
-113 220 213 216 217
-114 220 221 224 217
-115 221 224 225 228
-116 232 225 228 229
-117 88 1 89 2
-118 1 2 30 31
-119 59 60 30 31
-120 88 89 59 60
-121 89 90 18 19
-122 18 19 31 32
-123 77 31 32 76
-124 77 89 90 76
-125 90 91 6 7
-126 33 6 7 32
-127 33 64 32 65
-128 90 91 64 65
-129 23 24 91 92
-130 33 23 34 24
-131 33 34 81 82
-132 91 81 92 82
-133 11 12 92 93
-134 11 12 34 35
-135 34 35 69 70
-136 69 70 92 93
-137 93 28 94 29
-138 35 36 28 29
-139 35 36 86 87
-140 93 94 86 87
-141 16 17 94 95
-142 36 37 16 17
-143 36 37 74 75
-144 94 95 74 75
-145 4 5 95 96
-146 4 37 5 38
-147 37 38 62 63
-148 62 95 63 96
-149 22 96 97 21
-150 22 38 39 21
-151 79 80 38 39
-152 79 80 96 97
-153 9 97 10 98
-154 39 40 9 10
-155 67 68 39 40
-156 67 68 97 98
-157 99 26 27 98
-158 26 27 40 41
-159 40 84 41 85
-160 99 84 85 98
-161 99 100 14 15
-162 14 15 41 42
-163 72 73 41 42
-164 99 100 72 73
-165 100 2 101 3
-166 2 3 42 43
-167 60 61 42 43
-168 100 101 60 61
-169 101 102 19 20
-170 44 19 20 43
-171 44 77 78 43
-172 77 78 101 102
-173 102 103 7 8
-174 44 45 7 8
-175 44 66 45 65
-176 66 102 103 65
-177 24 25 103 104
-178 45 24 46 25
-179 45 46 82 83
-180 103 82 104 83
-181 12 13 104 105
-182 12 13 46 47
-183 46 47 70 71
-184 70 71 104 105
-185 1 105 29 106
-186 1 47 48 29
-187 47 48 59 87
-188 59 105 106 87
-189 17 18 106 107
-190 48 49 17 18
-191 48 49 75 76
-192 106 107 75 76
-193 5 6 107 108
-194 5 49 6 50
-195 49 50 63 64
-196 63 107 64 108
-197 22 23 108 109
-198 22 23 50 51
-199 80 81 50 51
-200 80 81 108 109
-201 11 110 10 109
-202 11 51 52 10
-203 68 69 51 52
-204 110 68 69 109
-205 110 111 27 28
-206 27 28 52 53
-207 52 85 53 86
-208 110 111 85 86
-209 111 112 15 16
-210 15 16 53 54
-211 73 74 53 54
-212 111 112 73 74
-213 112 3 113 4
-214 55 3 4 54
-215 55 61 62 54
-216 112 113 61 62
-217 113 114 20 21
-218 55 56 20 21
-219 55 56 78 79
-220 78 79 113 114
-221 114 115 8 9
-222 56 57 8 9
-223 66 56 67 57
-224 66 67 114 115
-225 25 26 115 116
-226 57 25 58 26
-227 57 58 83 84
-228 115 83 116 84
-229 88 13 14 116
-230 13 14 58 30
-231 58 71 72 30
-232 88 71 72 116
0

**************