C4graphGraph forms for C4 [ 232, 12 ] = SDD(C_58(1,17))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 232, 12 ] = SDD(C_58(1,17)).

(I) Following is a form readable by MAGMA:

g:=Graph<232|{ {34, 127}, {33, 127}, {32, 127}, {30, 126}, {28, 125}, {31, 126}, {29, 127}, {29, 126}, {24, 124}, {26, 126}, {25, 124}, {27, 125}, {26, 125}, {18, 122}, {20, 124}, {16, 121}, {19, 122}, {17, 123}, {23, 125}, {17, 122}, {23, 124}, {22, 123}, {21, 123}, {20, 123}, {6, 118}, {8, 120}, {4, 117}, {7, 118}, {5, 119}, {11, 121}, {5, 118}, {11, 120}, {1, 117}, {12, 120}, {14, 122}, {13, 120}, {3, 117}, {15, 121}, {1, 118}, {2, 117}, {14, 121}, {10, 119}, {9, 119}, {8, 119}, {43, 171}, {77, 205}, {75, 203}, {74, 202}, {6, 135}, {77, 204}, {72, 201}, {9, 136}, {79, 206}, {40, 170}, {78, 204}, {73, 203}, {46, 172}, {79, 205}, {68, 199}, {73, 202}, {83, 208}, {2, 134}, {67, 199}, {66, 198}, {85, 209}, {12, 137}, {64, 197}, {15, 138}, {85, 208}, {87, 210}, {98, 231}, {65, 199}, {86, 208}, {87, 209}, {96, 230}, {65, 198}, {76, 203}, {75, 204}, {90, 210}, {91, 211}, {93, 213}, {88, 209}, {93, 212}, {95, 214}, {34, 168}, {89, 211}, {94, 212}, {95, 213}, {52, 191}, {67, 200}, {89, 210}, {37, 169}, {69, 201}, {51, 191}, {100, 232}, {108, 224}, {109, 225}, {110, 226}, {111, 227}, {50, 191}, {71, 202}, {69, 200}, {82, 223}, {109, 224}, {111, 226}, {48, 190}, {71, 201}, {70, 200}, {80, 222}, {49, 190}, {91, 212}, {92, 211}, {110, 225}, {45, 189}, {76, 220}, {47, 191}, {30, 143}, {74, 219}, {44, 189}, {47, 190}, {44, 190}, {72, 218}, {40, 187}, {116, 231}, {46, 189}, {78, 221}, {112, 227}, {41, 189}, {115, 231}, {114, 230}, {112, 228}, {113, 229}, {24, 141}, {115, 230}, {66, 215}, {27, 142}, {41, 188}, {113, 228}, {42, 188}, {64, 214}, {43, 188}, {114, 229}, {7, 159}, {33, 185}, {35, 187}, {18, 139}, {21, 140}, {32, 185}, {35, 186}, {32, 186}, {38, 188}, {52, 174}, {34, 185}, {84, 207}, {39, 187}, {116, 232}, {68, 216}, {49, 173}, {82, 206}, {83, 207}, {3, 158}, {38, 187}, {80, 205}, {36, 186}, {81, 207}, {37, 186}, {70, 217}, {81, 206}, {21, 181}, {56, 152}, {23, 183}, {32, 128}, {20, 181}, {23, 182}, {54, 151}, {20, 182}, {26, 184}, {35, 129}, {16, 179}, {58, 153}, {22, 181}, {35, 128}, {17, 181}, {29, 185}, {36, 128}, {38, 130}, {17, 180}, {62, 155}, {29, 184}, {37, 128}, {48, 149}, {51, 150}, {18, 180}, {60, 154}, {30, 184}, {39, 129}, {19, 180}, {31, 184}, {38, 129}, {42, 130}, {44, 132}, {40, 129}, {43, 130}, {4, 174}, {10, 160}, {41, 131}, {47, 133}, {4, 175}, {28, 183}, {41, 130}, {47, 132}, {3, 175}, {13, 161}, {27, 183}, {2, 175}, {26, 183}, {46, 131}, {1, 175}, {24, 182}, {45, 131}, {25, 182}, {44, 131}, {19, 163}, {57, 137}, {55, 135}, {54, 134}, {1, 176}, {59, 138}, {57, 136}, {33, 144}, {52, 133}, {16, 162}, {59, 137}, {58, 136}, {22, 164}, {53, 135}, {53, 134}, {63, 140}, {100, 215}, {104, 219}, {108, 223}, {5, 177}, {63, 139}, {62, 138}, {48, 132}, {50, 134}, {84, 224}, {98, 214}, {99, 215}, {104, 220}, {105, 221}, {106, 222}, {107, 223}, {5, 176}, {60, 137}, {36, 145}, {39, 146}, {49, 132}, {96, 213}, {105, 220}, {107, 222}, {6, 176}, {61, 139}, {51, 133}, {97, 215}, {7, 176}, {61, 138}, {50, 133}, {86, 225}, {97, 214}, {106, 221}, {9, 177}, {11, 179}, {31, 167}, {92, 228}, {8, 177}, {11, 178}, {42, 147}, {45, 148}, {90, 227}, {8, 178}, {14, 180}, {28, 166}, {88, 226}, {10, 177}, {94, 229}, {99, 216}, {15, 179}, {25, 165}, {101, 217}, {102, 218}, {103, 219}, {14, 179}, {101, 216}, {103, 218}, {12, 178}, {13, 178}, {56, 135}, {55, 136}, {102, 217}, {34, 226}, {86, 150}, {87, 151}, {89, 153}, {84, 149}, {89, 152}, {91, 154}, {2, 192}, {85, 151}, {90, 152}, {91, 153}, {80, 147}, {85, 150}, {95, 156}, {81, 149}, {94, 154}, {95, 155}, {81, 148}, {83, 150}, {92, 153}, {25, 223}, {37, 227}, {82, 148}, {83, 149}, {93, 155}, {102, 160}, {103, 161}, {110, 168}, {111, 169}, {6, 193}, {72, 143}, {93, 154}, {103, 160}, {111, 168}, {22, 222}, {71, 143}, {70, 142}, {46, 230}, {68, 141}, {104, 161}, {106, 163}, {108, 165}, {110, 167}, {69, 143}, {100, 174}, {104, 162}, {105, 163}, {108, 166}, {109, 167}, {9, 194}, {69, 142}, {64, 139}, {15, 196}, {105, 162}, {109, 166}, {16, 220}, {65, 141}, {40, 228}, {96, 172}, {65, 140}, {67, 142}, {19, 221}, {67, 141}, {66, 140}, {43, 229}, {106, 164}, {107, 165}, {12, 195}, {87, 152}, {88, 151}, {98, 173}, {107, 164}, {10, 218}, {21, 198}, {27, 200}, {13, 219}, {49, 231}, {18, 197}, {71, 144}, {30, 201}, {73, 145}, {70, 159}, {116, 173}, {75, 146}, {73, 144}, {112, 169}, {114, 171}, {68, 158}, {116, 174}, {75, 145}, {74, 144}, {112, 170}, {113, 171}, {3, 216}, {79, 148}, {113, 170}, {52, 232}, {78, 146}, {64, 156}, {79, 147}, {76, 145}, {7, 217}, {115, 173}, {77, 147}, {114, 172}, {24, 199}, {115, 172}, {77, 146}, {66, 157}, {45, 206}, {51, 208}, {42, 205}, {54, 209}, {60, 212}, {72, 160}, {58, 211}, {56, 210}, {33, 202}, {74, 161}, {62, 213}, {39, 204}, {4, 232}, {78, 163}, {76, 162}, {36, 203}, {88, 168}, {86, 167}, {50, 192}, {84, 166}, {90, 169}, {53, 193}, {80, 164}, {53, 192}, {55, 194}, {94, 171}, {54, 192}, {55, 193}, {92, 170}, {82, 165}, {58, 194}, {61, 197}, {59, 195}, {56, 193}, {63, 198}, {61, 196}, {100, 157}, {102, 159}, {57, 195}, {63, 197}, {62, 196}, {101, 159}, {57, 194}, {96, 155}, {101, 158}, {28, 224}, {97, 157}, {97, 156}, {99, 158}, {31, 225}, {98, 156}, {99, 157}, {48, 207}, {60, 195}, {59, 196} }>;

(II) A more general form is to represent the graph as the orbit of {34, 127} under the group generated by the following permutations:

a: (131, 189)
b: (153, 211)
c: (173, 231)
d: (142, 200)
e: (156, 214)
f: (164, 222)
g: (146, 204)
h: (159, 217)
m: (2, 7)(3, 6)(4, 5)(8, 116)(9, 100)(10, 52)(11, 115)(12, 98)(13, 49)(14, 114)(15, 96)(16, 46)(17, 113)(18, 94)(19, 43)(20, 112)(21, 92)(22, 40)(23, 111)(24, 90)(25, 37)(26, 110)(27, 88)(28, 34)(29, 109)(30, 86)(32, 108)(33, 84)(35, 107)(36, 82)(38, 106)(39, 80)(41, 105)(42, 78)(44, 104)(45, 76)(47, 103)(48, 74)(50, 102)(51, 72)(53, 101)(54, 70)(55, 99)(56, 68)(57, 97)(58, 66)(59, 95)(60, 64)(61, 93)(63, 91)(65, 89)(67, 87)(69, 85)(71, 83)(73, 81)(75, 79)(117, 118)(119, 174)(120, 173)(121, 172)(122, 171)(123, 170)(124, 169)(125, 168)(126, 167)(127, 166)(128, 165)(129, 164)(130, 163)(131, 162)(132, 161)(133, 160)(134, 159)(135, 158)(136, 157)(137, 156)(138, 155)(139, 154)(140, 153)(141, 152)(142, 151)(143, 150)(144, 149)(145, 148)(146, 147)(175, 176)(177, 232)(178, 231)(179, 230)(180, 229)(181, 228)(182, 227)(183, 226)(184, 225)(185, 224)(186, 223)(187, 222)(188, 221)(189, 220)(190, 219)(191, 218)(192, 217)(193, 216)(194, 215)(195, 214)(196, 213)(197, 212)(198, 211)(199, 210)(200, 209)(201, 208)(202, 207)(203, 206)(204, 205)
n1: (130, 188)
a1: (157, 215)
b1: (127, 185)
c1: (158, 216)
d1: (119, 177)
e1: (141, 199)
f1: (126, 184)
g1: (174, 232)
h1: (120, 178)
m1: (161, 219)
n2: (121, 179)
a2: (170, 228)
b2: (169, 227)
c2: (138, 196)
d2: (154, 212)
e2: (160, 218)
f2: (133, 191)
g2: (140, 198)
h2: (171, 229)
m2: (147, 205)
n3: (122, 180)
a3: (165, 223)
b3: (166, 224)
c3: (134, 192)
d3: (137, 195)
e3: (151, 209)
f3: (144, 202)
g3: (124, 182)
h3: (132, 190)
m3: (162, 220)
n4: (172, 230)
a4: (123, 181)
b4: (167, 225)
c4: (136, 194)
d4: (117, 175)
e4: (143, 201)
f4: (125, 183)
g4: (128, 186)
h4: (150, 208)
m4: (148, 206)
n5: (168, 226)
a5: (139, 197)
b5: (152, 210)
c5: (155, 213)
d5: (163, 221)
e5: (118, 176)
f5: (135, 193)
g5: (149, 207)
h5: (129, 187)
m5: (1, 2, 53, 6)(3, 50, 56, 5)(4, 54, 55, 7)(8, 68, 47, 90)(9, 101, 52, 87)(10, 99, 51, 89)(11, 24, 44, 37)(12, 67, 49, 111)(13, 65, 48, 112)(14, 25, 41, 36)(15, 23, 46, 32)(16, 20, 45, 35)(17, 82, 38, 76)(18, 108, 43, 73)(19, 107, 42, 75)(21, 81, 40, 104)(22, 79, 39, 105)(26, 96, 29, 62)(27, 115, 34, 59)(28, 114, 33, 61)(30, 95, 31, 93)(57, 70, 116, 88)(58, 102, 100, 85)(60, 69, 98, 110)(63, 84, 113, 74)(64, 109, 94, 71)(66, 83, 92, 103)(72, 97, 86, 91)(77, 78, 106, 80)(117, 134, 135, 118)(119, 158, 133, 152)(120, 141, 132, 169)(121, 124, 131, 128)(122, 165, 130, 145)(123, 148, 129, 162)(125, 172, 127, 138)(126, 155)(136, 159, 174, 151)(137, 142, 173, 168)(139, 166, 171, 144)(140, 149, 170, 161)(143, 156, 167, 154)(146, 163, 164, 147)(150, 153, 160, 157)(175, 192, 193, 176)(177, 216, 191, 210)(178, 199, 190, 227)(179, 182, 189, 186)(180, 223, 188, 203)(181, 206, 187, 220)(183, 230, 185, 196)(184, 213)(194, 217, 232, 209)(195, 200, 231, 226)(197, 224, 229, 202)(198, 207, 228, 219)(201, 214, 225, 212)(204, 221, 222, 205)(208, 211, 218, 215)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 232, 12 ]
232
-1 176 117 118 175
-2 134 192 117 175
-3 158 117 216 175
-4 232 117 174 175
-5 176 177 118 119
-6 176 135 193 118
-7 176 159 118 217
-8 177 178 119 120
-9 177 136 194 119
-10 177 160 119 218
-11 121 178 179 120
-12 178 137 195 120
-13 178 161 120 219
-14 121 122 179 180
-15 121 179 138 196
-16 121 220 179 162
-17 122 123 180 181
-18 122 180 139 197
-19 122 221 180 163
-20 123 124 181 182
-21 198 123 181 140
-22 123 222 181 164
-23 124 125 182 183
-24 199 124 182 141
-25 165 124 223 182
-26 125 126 183 184
-27 200 125 183 142
-28 166 125 224 183
-29 126 127 184 185
-30 143 201 126 184
-31 167 126 225 184
-32 127 128 185 186
-33 144 202 127 185
-34 168 127 226 185
-35 187 128 129 186
-36 145 203 128 186
-37 169 128 227 186
-38 187 188 129 130
-39 187 146 204 129
-40 187 170 129 228
-41 188 189 130 131
-42 188 147 205 130
-43 188 171 130 229
-44 132 189 190 131
-45 189 148 206 131
-46 189 172 131 230
-47 132 133 190 191
-48 132 190 149 207
-49 132 231 190 173
-50 133 134 191 192
-51 133 191 150 208
-52 133 232 191 174
-53 134 135 192 193
-54 209 134 192 151
-55 135 136 193 194
-56 210 135 193 152
-57 136 137 194 195
-58 211 136 194 153
-59 137 138 195 196
-60 154 212 137 195
-61 138 139 196 197
-62 155 213 138 196
-63 198 139 140 197
-64 156 214 139 197
-65 198 199 140 141
-66 198 157 215 140
-67 199 200 141 142
-68 199 158 216 141
-69 143 200 201 142
-70 200 159 217 142
-71 143 144 201 202
-72 143 201 160 218
-73 144 145 202 203
-74 144 202 161 219
-75 145 146 203 204
-76 220 145 203 162
-77 146 147 204 205
-78 221 146 204 163
-79 147 148 205 206
-80 222 147 205 164
-81 148 149 206 207
-82 165 223 148 206
-83 149 150 207 208
-84 166 224 149 207
-85 209 150 151 208
-86 167 225 150 208
-87 209 210 151 152
-88 209 168 226 151
-89 210 211 152 153
-90 210 169 227 152
-91 154 211 212 153
-92 211 170 228 153
-93 154 155 212 213
-94 154 212 171 229
-95 155 156 213 214
-96 155 213 172 230
-97 156 157 214 215
-98 231 156 214 173
-99 157 158 215 216
-100 232 157 215 174
-101 158 159 216 217
-102 159 160 217 218
-103 160 161 218 219
-104 220 161 162 219
-105 220 221 162 163
-106 221 222 163 164
-107 165 222 223 164
-108 165 166 223 224
-109 166 167 224 225
-110 167 168 225 226
-111 168 169 226 227
-112 169 170 227 228
-113 170 171 228 229
-114 171 172 229 230
-115 231 172 173 230
-116 231 232 173 174
-117 1 2 3 4
-118 1 5 6 7
-119 5 8 9 10
-120 11 12 13 8
-121 11 14 15 16
-122 14 17 18 19
-123 22 17 20 21
-124 23 24 25 20
-125 23 26 27 28
-126 26 29 30 31
-127 33 34 29 32
-128 35 36 37 32
-129 35 38 39 40
-130 38 41 42 43
-131 44 45 46 41
-132 44 47 48 49
-133 47 50 51 52
-134 2 50 53 54
-135 55 56 6 53
-136 55 57 58 9
-137 12 57 59 60
-138 15 59 61 62
-139 61 18 63 64
-140 66 63 21 65
-141 67 24 68 65
-142 67 69 70 27
-143 69 71 72 30
-144 33 71 73 74
-145 36 73 75 76
-146 77 78 39 75
-147 77 79 80 42
-148 45 79 81 82
-149 48 81 83 84
-150 83 51 85 86
-151 88 85 54 87
-152 56 89 90 87
-153 89 58 91 92
-154 91 60 93 94
-155 93 62 95 96
-156 95 64 97 98
-157 66 99 100 97
-158 99 68 101 3
-159 101 102 70 7
-160 102 103 72 10
-161 13 103 104 74
-162 16 104 105 76
-163 78 105 106 19
-164 22 80 106 107
-165 25 82 107 108
-166 28 84 108 109
-167 110 31 86 109
-168 88 110 34 111
-169 111 90 112 37
-170 112 113 92 40
-171 113 114 94 43
-172 46 114 115 96
-173 49 115 116 98
-174 100 4 116 52
-175 1 2 3 4
-176 1 5 6 7
-177 5 8 9 10
-178 11 12 13 8
-179 11 14 15 16
-180 14 17 18 19
-181 22 17 20 21
-182 23 24 25 20
-183 23 26 27 28
-184 26 29 30 31
-185 33 34 29 32
-186 35 36 37 32
-187 35 38 39 40
-188 38 41 42 43
-189 44 45 46 41
-190 44 47 48 49
-191 47 50 51 52
-192 2 50 53 54
-193 55 56 6 53
-194 55 57 58 9
-195 12 57 59 60
-196 15 59 61 62
-197 61 18 63 64
-198 66 63 21 65
-199 67 24 68 65
-200 67 69 70 27
-201 69 71 72 30
-202 33 71 73 74
-203 36 73 75 76
-204 77 78 39 75
-205 77 79 80 42
-206 45 79 81 82
-207 48 81 83 84
-208 83 51 85 86
-209 88 85 54 87
-210 56 89 90 87
-211 89 58 91 92
-212 91 60 93 94
-213 93 62 95 96
-214 95 64 97 98
-215 66 99 100 97
-216 99 68 101 3
-217 101 102 70 7
-218 102 103 72 10
-219 13 103 104 74
-220 16 104 105 76
-221 78 105 106 19
-222 22 80 106 107
-223 25 82 107 108
-224 28 84 108 109
-225 110 31 86 109
-226 88 110 34 111
-227 111 90 112 37
-228 112 113 92 40
-229 113 114 94 43
-230 46 114 115 96
-231 49 115 116 98
-232 100 4 116 52
0

**************