[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 233, 1 ] =
C_233(1,89).
(I) Following is a form readable by MAGMA:
g:=Graph<233|{ {2, 3}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198,
199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187},
{184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172,
173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161},
{158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146,
147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135},
{132, 133}, {130, 131}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42,
43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95},
{96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109},
{110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122,
123}, {124, 125}, {126, 127}, {128, 129}, {1, 2}, {229, 230}, {225, 226}, {221,
222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198},
{193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169,
170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146},
{141, 142}, {137, 138}, {133, 134}, {129, 130}, {65, 66}, {61, 62}, {57, 58},
{53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78},
{81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109,
110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {3, 4}, {227, 228}, {219,
220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172},
{163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60},
{51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84},
{91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {231, 232},
{215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55,
56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16},
{207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32},
{223, 224}, {159, 160}, {95, 96}, {2, 91}, {134, 223}, {132, 221}, {130, 219},
{128, 217}, {4, 93}, {6, 95}, {32, 121}, {34, 123}, {36, 125}, {38, 127}, {1,
90}, {133, 222}, {129, 218}, {5, 94}, {33, 122}, {37, 126}, {3, 92}, {131, 220},
{35, 124}, {7, 96}, {143, 232}, {135, 224}, {15, 104}, {23, 112}, {31, 120}, {8,
97}, {142, 231}, {140, 229}, {138, 227}, {136, 225}, {10, 99}, {12, 101}, {14,
103}, {24, 113}, {26, 115}, {28, 117}, {30, 119}, {9, 98}, {141, 230}, {137,
226}, {13, 102}, {25, 114}, {29, 118}, {11, 100}, {139, 228}, {27, 116}, {16,
105}, {144, 233}, {18, 107}, {20, 109}, {22, 111}, {17, 106}, {21, 110}, {19,
108}, {191, 192}, {63, 64}, {1, 145}, {68, 212}, {67, 211}, {66, 210}, {65,
209}, {64, 208}, {47, 191}, {46, 190}, {45, 189}, {44, 188}, {43, 187}, {42,
186}, {41, 185}, {40, 184}, {2, 146}, {3, 147}, {4, 148}, {5, 149}, {6, 150},
{7, 151}, {8, 152}, {9, 153}, {10, 154}, {11, 155}, {12, 156}, {13, 157}, {14,
158}, {15, 159}, {32, 176}, {33, 177}, {34, 178}, {35, 179}, {36, 180}, {37,
181}, {38, 182}, {39, 183}, {69, 213}, {70, 214}, {71, 215}, {72, 216}, {73,
217}, {74, 218}, {75, 219}, {76, 220}, {77, 221}, {78, 222}, {79, 223}, {39,
128}, {63, 152}, {55, 144}, {47, 136}, {103, 192}, {111, 200}, {119, 208}, {127,
216}, {40, 129}, {62, 151}, {60, 149}, {58, 147}, {56, 145}, {46, 135}, {44,
133}, {42, 131}, {104, 193}, {106, 195}, {108, 197}, {110, 199}, {120, 209},
{122, 211}, {124, 213}, {126, 215}, {41, 130}, {61, 150}, {57, 146}, {45, 134},
{105, 194}, {109, 198}, {121, 210}, {125, 214}, {43, 132}, {59, 148}, {107,
196}, {123, 212}, {16, 160}, {17, 161}, {18, 162}, {19, 163}, {20, 164}, {21,
165}, {22, 166}, {23, 167}, {24, 168}, {25, 169}, {26, 170}, {27, 171}, {28,
172}, {29, 173}, {30, 174}, {31, 175}, {80, 224}, {81, 225}, {82, 226}, {83,
227}, {84, 228}, {85, 229}, {86, 230}, {87, 231}, {88, 232}, {89, 233}, {48,
137}, {54, 143}, {52, 141}, {50, 139}, {112, 201}, {114, 203}, {116, 205}, {118,
207}, {49, 138}, {53, 142}, {113, 202}, {117, 206}, {51, 140}, {115, 204}, {64,
153}, {68, 157}, {66, 155}, {70, 159}, {96, 185}, {98, 187}, {100, 189}, {102,
191}, {65, 154}, {69, 158}, {97, 186}, {101, 190}, {67, 156}, {99, 188}, {71,
160}, {79, 168}, {87, 176}, {95, 184}, {1, 233}, {72, 161}, {74, 163}, {76,
165}, {78, 167}, {88, 177}, {90, 179}, {92, 181}, {94, 183}, {73, 162}, {77,
166}, {89, 178}, {93, 182}, {75, 164}, {91, 180}, {48, 192}, {63, 207}, {62,
206}, {61, 205}, {60, 204}, {59, 203}, {58, 202}, {57, 201}, {56, 200}, {55,
199}, {54, 198}, {53, 197}, {52, 196}, {51, 195}, {50, 194}, {49, 193}, {80,
169}, {82, 171}, {84, 173}, {86, 175}, {81, 170}, {85, 174}, {83, 172}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 145, 233, 90)(3, 56, 232, 179)(4, 200, 231, 35)(5, 111, 230, 124)(6, 22,
229, 213)(7, 166, 228, 69)(8, 77, 227, 158)(9, 221, 226, 14)(10, 132, 225,
103)(11, 43, 224, 192)(12, 187, 223, 48)(13, 98, 222, 137)(15, 153, 220, 82)(16,
64, 219, 171)(17, 208, 218, 27)(18, 119, 217, 116)(19, 30, 216, 205)(20, 174,
215, 61)(21, 85, 214, 150)(23, 140, 212, 95)(24, 51, 211, 184)(25, 195, 210,
40)(26, 106, 209, 129)(28, 161, 207, 74)(29, 72, 206, 163)(31, 127, 204,
108)(32, 38, 203, 197)(33, 182, 202, 53)(34, 93, 201, 142)(36, 148, 199, 87)(37,
59, 198, 176)(39, 114, 196, 121)(41, 169, 194, 66)(42, 80, 193, 155)(44, 135,
191, 100)(45, 46, 190, 189)(47, 101, 188, 134)(49, 156, 186, 79)(50, 67, 185,
168)(52, 122, 183, 113)(54, 177, 181, 58)(55, 88, 180, 147)(57, 143, 178,
92)(60, 109, 175, 126)(62, 164, 173, 71)(63, 75, 172, 160)(65, 130, 170,
105)(68, 96, 167, 139)(70, 151, 165, 84)(73, 117, 162, 118)(76, 83, 159,
152)(78, 138, 157, 97)(81, 104, 154, 131)(86, 125, 149, 110)(89, 91, 146,
144)(94, 112, 141, 123)(99, 133, 136, 102)(107, 120, 128, 115)
C4[ 233, 1 ]
233
-1 2 90 145 233
-2 1 3 91 146
-3 2 4 92 147
-4 3 5 93 148
-5 4 6 94 149
-6 5 7 95 150
-7 6 8 96 151
-8 7 9 97 152
-9 8 10 98 153
-10 11 99 154 9
-11 12 100 155 10
-12 11 13 101 156
-13 12 14 102 157
-14 13 15 103 158
-15 14 16 104 159
-16 15 17 105 160
-17 16 18 106 161
-18 17 19 107 162
-19 18 20 108 163
-20 19 21 109 164
-21 22 110 165 20
-22 23 111 166 21
-23 22 24 112 167
-24 23 25 113 168
-25 24 26 114 169
-26 25 27 115 170
-27 26 28 116 171
-28 27 29 117 172
-29 28 30 118 173
-30 29 31 119 174
-31 30 32 120 175
-32 33 121 176 31
-33 34 122 177 32
-34 33 35 123 178
-35 34 36 124 179
-36 35 37 125 180
-37 36 38 126 181
-38 37 39 127 182
-39 38 40 128 183
-40 39 41 129 184
-41 40 42 130 185
-42 41 43 131 186
-43 44 132 187 42
-44 45 133 188 43
-45 44 46 134 189
-46 45 47 135 190
-47 46 48 136 191
-48 47 49 137 192
-49 48 50 138 193
-50 49 51 139 194
-51 50 52 140 195
-52 51 53 141 196
-53 52 54 142 197
-54 55 143 198 53
-55 56 144 199 54
-56 55 57 145 200
-57 56 58 146 201
-58 57 59 147 202
-59 58 60 148 203
-60 59 61 149 204
-61 60 62 150 205
-62 61 63 151 206
-63 62 64 152 207
-64 63 65 153 208
-65 66 154 209 64
-66 67 155 210 65
-67 66 68 156 211
-68 67 69 157 212
-69 68 70 158 213
-70 69 71 159 214
-71 70 72 160 215
-72 71 73 161 216
-73 72 74 162 217
-74 73 75 163 218
-75 74 76 164 219
-76 77 165 220 75
-77 78 166 221 76
-78 77 79 167 222
-79 78 80 168 223
-80 79 81 169 224
-81 80 82 170 225
-82 81 83 171 226
-83 82 84 172 227
-84 83 85 173 228
-85 84 86 174 229
-86 85 87 175 230
-87 88 176 231 86
-88 89 177 232 87
-89 88 90 178 233
-90 1 89 91 179
-91 2 90 92 180
-92 3 91 93 181
-93 4 92 94 182
-94 5 93 95 183
-95 6 94 96 184
-96 7 95 97 185
-97 8 96 98 186
-98 99 187 9 97
-99 100 188 10 98
-100 11 99 101 189
-101 12 100 102 190
-102 13 101 103 191
-103 14 102 104 192
-104 15 103 105 193
-105 16 104 106 194
-106 17 105 107 195
-107 18 106 108 196
-108 19 107 109 197
-109 110 198 20 108
-110 111 199 21 109
-111 22 110 112 200
-112 23 111 113 201
-113 24 112 114 202
-114 25 113 115 203
-115 26 114 116 204
-116 27 115 117 205
-117 28 116 118 206
-118 29 117 119 207
-119 30 118 120 208
-120 121 209 31 119
-121 122 210 32 120
-122 33 121 123 211
-123 34 122 124 212
-124 35 123 125 213
-125 36 124 126 214
-126 37 125 127 215
-127 38 126 128 216
-128 39 127 129 217
-129 40 128 130 218
-130 41 129 131 219
-131 132 220 42 130
-132 133 221 43 131
-133 44 132 134 222
-134 45 133 135 223
-135 46 134 136 224
-136 47 135 137 225
-137 48 136 138 226
-138 49 137 139 227
-139 50 138 140 228
-140 51 139 141 229
-141 52 140 142 230
-142 143 231 53 141
-143 144 232 54 142
-144 55 143 145 233
-145 1 56 144 146
-146 2 57 145 147
-147 3 58 146 148
-148 4 59 147 149
-149 5 60 148 150
-150 6 61 149 151
-151 7 62 150 152
-152 8 63 151 153
-153 154 9 64 152
-154 155 10 65 153
-155 11 66 154 156
-156 12 67 155 157
-157 13 68 156 158
-158 14 69 157 159
-159 15 70 158 160
-160 16 71 159 161
-161 17 72 160 162
-162 18 73 161 163
-163 19 74 162 164
-164 165 20 75 163
-165 166 21 76 164
-166 22 77 165 167
-167 23 78 166 168
-168 24 79 167 169
-169 25 80 168 170
-170 26 81 169 171
-171 27 82 170 172
-172 28 83 171 173
-173 29 84 172 174
-174 30 85 173 175
-175 176 31 86 174
-176 177 32 87 175
-177 33 88 176 178
-178 34 89 177 179
-179 35 90 178 180
-180 36 91 179 181
-181 37 92 180 182
-182 38 93 181 183
-183 39 94 182 184
-184 40 95 183 185
-185 41 96 184 186
-186 187 42 97 185
-187 188 43 98 186
-188 44 99 187 189
-189 45 100 188 190
-190 46 101 189 191
-191 47 102 190 192
-192 48 103 191 193
-193 49 104 192 194
-194 50 105 193 195
-195 51 106 194 196
-196 52 107 195 197
-197 198 53 108 196
-198 199 54 109 197
-199 55 110 198 200
-200 56 111 199 201
-201 57 112 200 202
-202 58 113 201 203
-203 59 114 202 204
-204 60 115 203 205
-205 61 116 204 206
-206 62 117 205 207
-207 63 118 206 208
-208 209 64 119 207
-209 210 65 120 208
-210 66 121 209 211
-211 67 122 210 212
-212 68 123 211 213
-213 69 124 212 214
-214 70 125 213 215
-215 71 126 214 216
-216 72 127 215 217
-217 73 128 216 218
-218 74 129 217 219
-219 220 75 130 218
-220 221 76 131 219
-221 77 132 220 222
-222 78 133 221 223
-223 79 134 222 224
-224 80 135 223 225
-225 81 136 224 226
-226 82 137 225 227
-227 83 138 226 228
-228 84 139 227 229
-229 85 140 228 230
-230 231 86 141 229
-231 232 87 142 230
-232 88 143 231 233
-233 1 89 144 232
0