C4graphGraph forms for C4 [ 234, 1 ] = W(117,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 234, 1 ] = W(117,2).

(I) Following is a form readable by MAGMA:

g:=Graph<234|{ {2, 3}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {1, 2}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {3, 4}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {1, 117}, {2, 118}, {3, 119}, {8, 124}, {9, 125}, {10, 126}, {11, 127}, {1, 119}, {8, 126}, {9, 127}, {2, 120}, {3, 121}, {6, 124}, {7, 125}, {4, 120}, {5, 121}, {6, 122}, {7, 123}, {4, 122}, {5, 123}, {63, 64}, {191, 192}, {10, 128}, {63, 181}, {62, 180}, {59, 177}, {58, 176}, {47, 165}, {46, 164}, {43, 161}, {42, 160}, {11, 129}, {14, 132}, {15, 133}, {26, 144}, {27, 145}, {30, 148}, {31, 149}, {74, 192}, {75, 193}, {78, 196}, {79, 197}, {90, 208}, {91, 209}, {94, 212}, {95, 213}, {106, 224}, {107, 225}, {110, 228}, {111, 229}, {12, 128}, {63, 179}, {62, 178}, {61, 177}, {60, 176}, {47, 163}, {46, 162}, {45, 161}, {44, 160}, {13, 129}, {14, 130}, {15, 131}, {28, 144}, {29, 145}, {30, 146}, {31, 147}, {76, 192}, {77, 193}, {78, 194}, {79, 195}, {92, 208}, {93, 209}, {94, 210}, {95, 211}, {108, 224}, {109, 225}, {110, 226}, {111, 227}, {12, 130}, {61, 179}, {60, 178}, {45, 163}, {44, 162}, {13, 131}, {28, 146}, {29, 147}, {76, 194}, {77, 195}, {92, 210}, {93, 211}, {108, 226}, {109, 227}, {16, 132}, {115, 231}, {114, 230}, {59, 175}, {58, 174}, {57, 173}, {56, 172}, {51, 167}, {50, 166}, {49, 165}, {48, 164}, {17, 133}, {18, 134}, {19, 135}, {24, 140}, {25, 141}, {26, 142}, {27, 143}, {80, 196}, {81, 197}, {82, 198}, {83, 199}, {88, 204}, {89, 205}, {90, 206}, {91, 207}, {112, 228}, {113, 229}, {16, 134}, {113, 231}, {57, 175}, {56, 174}, {49, 167}, {48, 166}, {17, 135}, {24, 142}, {25, 143}, {80, 198}, {81, 199}, {88, 206}, {89, 207}, {112, 230}, {18, 136}, {115, 233}, {114, 232}, {55, 173}, {54, 172}, {51, 169}, {50, 168}, {19, 137}, {22, 140}, {23, 141}, {82, 200}, {83, 201}, {86, 204}, {87, 205}, {20, 136}, {118, 234}, {117, 233}, {116, 232}, {55, 171}, {54, 170}, {53, 169}, {52, 168}, {21, 137}, {22, 138}, {23, 139}, {84, 200}, {85, 201}, {86, 202}, {87, 203}, {20, 138}, {116, 234}, {53, 171}, {52, 170}, {21, 139}, {84, 202}, {85, 203}, {32, 148}, {43, 159}, {42, 158}, {33, 149}, {34, 150}, {35, 151}, {40, 156}, {41, 157}, {96, 212}, {97, 213}, {98, 214}, {99, 215}, {104, 220}, {105, 221}, {106, 222}, {107, 223}, {32, 150}, {41, 159}, {33, 151}, {40, 158}, {96, 214}, {97, 215}, {104, 222}, {105, 223}, {34, 152}, {35, 153}, {38, 156}, {39, 157}, {98, 216}, {99, 217}, {102, 220}, {103, 221}, {36, 152}, {37, 153}, {38, 154}, {39, 155}, {100, 216}, {101, 217}, {102, 218}, {103, 219}, {36, 154}, {37, 155}, {100, 218}, {101, 219}, {1, 234}, {64, 180}, {67, 183}, {66, 182}, {65, 181}, {72, 188}, {73, 189}, {74, 190}, {75, 191}, {64, 182}, {65, 183}, {72, 190}, {73, 191}, {66, 184}, {67, 185}, {70, 188}, {71, 189}, {68, 184}, {69, 185}, {70, 186}, {71, 187}, {68, 186}, {69, 187}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (48, 165)
b: (103, 220)
c: (37, 154)
d: (27, 144)
e: (89, 206)
f: (75, 192)
g: (107, 224)
h: (41, 158)
m: (36, 153)
n1: (61, 178)
a1: (116, 233)
b1: (29, 146)
c1: (95, 212)
d1: (38, 155)
e1: (99, 216)
f1: (33, 150)
g1: (86, 203)
h1: (14, 131)
m1: (106, 223)
n2: (69, 186)
a2: (44, 161)
b2: (80, 197)
c2: (66, 183)
d2: (97, 214)
e2: (35, 152)
f2: (26, 143)
g2: (93, 210)
h2: (31, 148)
m2: (109, 226)
n3: (47, 164)
a3: (10, 127)
b3: (68, 185)
c3: (84, 201)
d3: (110, 227)
e3: (59, 176)
f3: (40, 157)
g3: (112, 229)
h3: (5, 122)
m3: (2, 119)
n4: (88, 205)
a4: (19, 136)
b4: (53, 170)
c4: (81, 198)
d4: (11, 128)
e4: (22, 139)
f4: (72, 189)
g4: (3, 120)
h4: (18, 135)
m4: (24, 141)
n5: (16, 133)
a5: (111, 228)
b5: (45, 162)
c5: (62, 179)
d5: (100, 217)
e5: (73, 190)
f5: (34, 151)
g5: (92, 209)
h5: (90, 207)
m5: (52, 169)
n6: (82, 199)
a6: (39, 156)
b6: (101, 218)
c6: (105, 222)
d6: (43, 160)
e6: (71, 188)
f6: (23, 140)
g6: (85, 202)
h6: (46, 163)
m6: (67, 184)
n7: (7, 124)
a7: (25, 142)
b7: (91, 208)
c7: (113, 230)
d7: (51, 168)
e7: (32, 149)
f7: (60, 177)
g7: (114, 231)
h7: (108, 225)
m7: (20, 137)
n8: (87, 204)
a8: (21, 138)
b8: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117)(118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234)
c8: (30, 147)
d8: (76, 193)
e8: (65, 182)
f8: (4, 121)
g8: (28, 145)
h8: (63, 180)
m8: (70, 187)
n9: (17, 134)
a9: (83, 200)
b9: (115, 232)
c9: (49, 166)
d9: (96, 213)
e9: (78, 195)
f9: (56, 173)
g9: (104, 221)
h9: (98, 215)
m9: (54, 171)
n10: (64, 181)
a10: (6, 123)
b10: (9, 126)
c10: (50, 167)
d10: (12, 129)
e10: (42, 159)
f10: (102, 219)
g10: (55, 172)
h10: (117, 234)
m10: (57, 174)
n11: (8, 125)
a11: (2, 117)(3, 116)(4, 115)(5, 114)(6, 113)(7, 112)(8, 111)(9, 110)(10, 109)(11, 108)(12, 107)(13, 106)(14, 105)(15, 104)(16, 103)(17, 102)(18, 101)(19, 100)(20, 99)(21, 98)(22, 97)(23, 96)(24, 95)(25, 94)(26, 93)(27, 92)(28, 91)(29, 90)(30, 89)(31, 88)(32, 87)(33, 86)(34, 85)(35, 84)(36, 83)(37, 82)(38, 81)(39, 80)(40, 79)(41, 78)(42, 77)(43, 76)(44, 75)(45, 74)(46, 73)(47, 72)(48, 71)(49, 70)(50, 69)(51, 68)(52, 67)(53, 66)(54, 65)(55, 64)(56, 63)(57, 62)(58, 61)(59, 60)(119, 234)(120, 233)(121, 232)(122, 231)(123, 230)(124, 229)(125, 228)(126, 227)(127, 226)(128, 225)(129, 224)(130, 223)(131, 222)(132, 221)(133, 220)(134, 219)(135, 218)(136, 217)(137, 216)(138, 215)(139, 214)(140, 213)(141, 212)(142, 211)(143, 210)(144, 209)(145, 208)(146, 207)(147, 206)(148, 205)(149, 204)(150, 203)(151, 202)(152, 201)(153, 200)(154, 199)(155, 198)(156, 197)(157, 196)(158, 195)(159, 194)(160, 193)(161, 192)(162, 191)(163, 190)(164, 189)(165, 188)(166, 187)(167, 186)(168, 185)(169, 184)(170, 183)(171, 182)(172, 181)(173, 180)(174, 179)(175, 178)(176, 177)
b11: (94, 211)
c11: (74, 191)
d11: (13, 130)
e11: (79, 196)
f11: (77, 194)
g11: (15, 132)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 234, 1 ]
234
-1 2 234 117 119
-2 1 3 118 120
-3 121 2 4 119
-4 122 3 5 120
-5 121 123 4 6
-6 122 124 5 7
-7 123 125 6 8
-8 124 126 7 9
-9 125 127 8 10
-10 11 126 128 9
-11 12 127 129 10
-12 11 13 128 130
-13 12 14 129 131
-14 132 13 15 130
-15 133 14 16 131
-16 132 134 15 17
-17 133 135 16 18
-18 134 136 17 19
-19 135 137 18 20
-20 136 138 19 21
-21 22 137 139 20
-22 23 138 140 21
-23 22 24 139 141
-24 23 25 140 142
-25 143 24 26 141
-26 144 25 27 142
-27 143 145 26 28
-28 144 146 27 29
-29 145 147 28 30
-30 146 148 29 31
-31 147 149 30 32
-32 33 148 150 31
-33 34 149 151 32
-34 33 35 150 152
-35 34 36 151 153
-36 154 35 37 152
-37 155 36 38 153
-38 154 156 37 39
-39 155 157 38 40
-40 156 158 39 41
-41 157 159 40 42
-42 158 160 41 43
-43 44 159 161 42
-44 45 160 162 43
-45 44 46 161 163
-46 45 47 162 164
-47 165 46 48 163
-48 166 47 49 164
-49 165 167 48 50
-50 166 168 49 51
-51 167 169 50 52
-52 168 170 51 53
-53 169 171 52 54
-54 55 170 172 53
-55 56 171 173 54
-56 55 57 172 174
-57 56 58 173 175
-58 176 57 59 174
-59 177 58 60 175
-60 176 178 59 61
-61 177 179 60 62
-62 178 180 61 63
-63 179 181 62 64
-64 180 182 63 65
-65 66 181 183 64
-66 67 182 184 65
-67 66 68 183 185
-68 67 69 184 186
-69 187 68 70 185
-70 188 69 71 186
-71 187 189 70 72
-72 188 190 71 73
-73 189 191 72 74
-74 190 192 73 75
-75 191 193 74 76
-76 77 192 194 75
-77 78 193 195 76
-78 77 79 194 196
-79 78 80 195 197
-80 198 79 81 196
-81 199 80 82 197
-82 198 200 81 83
-83 199 201 82 84
-84 200 202 83 85
-85 201 203 84 86
-86 202 204 85 87
-87 88 203 205 86
-88 89 204 206 87
-89 88 90 205 207
-90 89 91 206 208
-91 209 90 92 207
-92 210 91 93 208
-93 209 211 92 94
-94 210 212 93 95
-95 211 213 94 96
-96 212 214 95 97
-97 213 215 96 98
-98 99 214 216 97
-99 100 215 217 98
-100 99 101 216 218
-101 100 102 217 219
-102 220 101 103 218
-103 221 102 104 219
-104 220 222 103 105
-105 221 223 104 106
-106 222 224 105 107
-107 223 225 106 108
-108 224 226 107 109
-109 110 225 227 108
-110 111 226 228 109
-111 110 112 227 229
-112 111 113 228 230
-113 231 112 114 229
-114 232 113 115 230
-115 231 233 114 116
-116 232 234 115 117
-117 1 233 116 118
-118 2 234 117 119
-119 1 3 118 120
-120 121 2 4 119
-121 122 3 5 120
-122 121 123 4 6
-123 122 124 5 7
-124 123 125 6 8
-125 124 126 7 9
-126 125 127 8 10
-127 11 126 128 9
-128 12 127 129 10
-129 11 13 128 130
-130 12 14 129 131
-131 132 13 15 130
-132 133 14 16 131
-133 132 134 15 17
-134 133 135 16 18
-135 134 136 17 19
-136 135 137 18 20
-137 136 138 19 21
-138 22 137 139 20
-139 23 138 140 21
-140 22 24 139 141
-141 23 25 140 142
-142 143 24 26 141
-143 144 25 27 142
-144 143 145 26 28
-145 144 146 27 29
-146 145 147 28 30
-147 146 148 29 31
-148 147 149 30 32
-149 33 148 150 31
-150 34 149 151 32
-151 33 35 150 152
-152 34 36 151 153
-153 154 35 37 152
-154 155 36 38 153
-155 154 156 37 39
-156 155 157 38 40
-157 156 158 39 41
-158 157 159 40 42
-159 158 160 41 43
-160 44 159 161 42
-161 45 160 162 43
-162 44 46 161 163
-163 45 47 162 164
-164 165 46 48 163
-165 166 47 49 164
-166 165 167 48 50
-167 166 168 49 51
-168 167 169 50 52
-169 168 170 51 53
-170 169 171 52 54
-171 55 170 172 53
-172 56 171 173 54
-173 55 57 172 174
-174 56 58 173 175
-175 176 57 59 174
-176 177 58 60 175
-177 176 178 59 61
-178 177 179 60 62
-179 178 180 61 63
-180 179 181 62 64
-181 180 182 63 65
-182 66 181 183 64
-183 67 182 184 65
-184 66 68 183 185
-185 67 69 184 186
-186 187 68 70 185
-187 188 69 71 186
-188 187 189 70 72
-189 188 190 71 73
-190 189 191 72 74
-191 190 192 73 75
-192 191 193 74 76
-193 77 192 194 75
-194 78 193 195 76
-195 77 79 194 196
-196 78 80 195 197
-197 198 79 81 196
-198 199 80 82 197
-199 198 200 81 83
-200 199 201 82 84
-201 200 202 83 85
-202 201 203 84 86
-203 202 204 85 87
-204 88 203 205 86
-205 89 204 206 87
-206 88 90 205 207
-207 89 91 206 208
-208 209 90 92 207
-209 210 91 93 208
-210 209 211 92 94
-211 210 212 93 95
-212 211 213 94 96
-213 212 214 95 97
-214 213 215 96 98
-215 99 214 216 97
-216 100 215 217 98
-217 99 101 216 218
-218 100 102 217 219
-219 220 101 103 218
-220 221 102 104 219
-221 220 222 103 105
-222 221 223 104 106
-223 222 224 105 107
-224 223 225 106 108
-225 224 226 107 109
-226 110 225 227 108
-227 111 226 228 109
-228 110 112 227 229
-229 111 113 228 230
-230 231 112 114 229
-231 232 113 115 230
-232 231 233 114 116
-233 232 234 115 117
-234 1 233 116 118
0

**************