[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 234, 2 ] =
C_234(1,53).
(I) Following is a form readable by MAGMA:
g:=Graph<234|{ {2, 3}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198,
199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187},
{184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172,
173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161},
{158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142,
143}, {144, 145}, {146, 147}, {148, 149}, {1, 2}, {233, 234}, {229, 230}, {225,
226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202},
{197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173,
174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150},
{81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54},
{49, 50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {37, 38}, {41, 42}, {45, 46}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125,
126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {3, 4}, {227,
228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180},
{171, 172}, {163, 164}, {155, 156}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {83, 84}, {91, 92}, {99, 100},
{107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8},
{231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71,
72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136},
{15, 16}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144},
{2, 55}, {74, 127}, {72, 125}, {66, 119}, {64, 117}, {8, 61}, {10, 63}, {128,
181}, {130, 183}, {136, 189}, {138, 191}, {1, 54}, {73, 126}, {65, 118}, {9,
62}, {129, 182}, {137, 190}, {3, 56}, {71, 124}, {67, 120}, {7, 60}, {131, 184},
{135, 188}, {4, 57}, {70, 123}, {68, 121}, {6, 59}, {132, 185}, {134, 187}, {5,
58}, {223, 224}, {159, 160}, {69, 122}, {31, 32}, {95, 96}, {133, 186}, {11,
64}, {175, 228}, {171, 224}, {159, 212}, {155, 208}, {63, 116}, {59, 112}, {47,
100}, {15, 68}, {27, 80}, {31, 84}, {43, 96}, {139, 192}, {143, 196}, {12, 65},
{174, 227}, {172, 225}, {158, 211}, {156, 209}, {62, 115}, {60, 113}, {14, 67},
{28, 81}, {30, 83}, {44, 97}, {46, 99}, {140, 193}, {142, 195}, {13, 66}, {173,
226}, {157, 210}, {61, 114}, {29, 82}, {45, 98}, {141, 194}, {16, 69}, {178,
231}, {176, 229}, {154, 207}, {152, 205}, {58, 111}, {56, 109}, {50, 103}, {48,
101}, {18, 71}, {24, 77}, {26, 79}, {144, 197}, {146, 199}, {17, 70}, {177,
230}, {153, 206}, {57, 110}, {49, 102}, {25, 78}, {145, 198}, {19, 72}, {179,
232}, {151, 204}, {55, 108}, {51, 104}, {23, 76}, {147, 200}, {20, 73}, {180,
233}, {150, 203}, {54, 107}, {52, 105}, {22, 75}, {148, 201}, {21, 74}, {181,
234}, {149, 202}, {53, 106}, {32, 85}, {170, 223}, {168, 221}, {162, 215}, {160,
213}, {34, 87}, {40, 93}, {42, 95}, {33, 86}, {169, 222}, {161, 214}, {41, 94},
{35, 88}, {167, 220}, {163, 216}, {39, 92}, {36, 89}, {166, 219}, {164, 217},
{38, 91}, {37, 90}, {191, 192}, {165, 218}, {63, 64}, {2, 183}, {8, 189}, {10,
191}, {1, 182}, {9, 190}, {3, 184}, {7, 188}, {4, 185}, {6, 187}, {5, 186}, {11,
192}, {79, 132}, {75, 128}, {47, 228}, {15, 196}, {27, 208}, {31, 212}, {43,
224}, {91, 144}, {95, 148}, {107, 160}, {111, 164}, {123, 176}, {127, 180}, {12,
193}, {78, 131}, {76, 129}, {14, 195}, {28, 209}, {30, 211}, {44, 225}, {46,
227}, {92, 145}, {94, 147}, {108, 161}, {110, 163}, {124, 177}, {126, 179}, {13,
194}, {77, 130}, {29, 210}, {45, 226}, {93, 146}, {109, 162}, {125, 178}, {16,
197}, {80, 133}, {50, 231}, {48, 229}, {18, 199}, {24, 205}, {26, 207}, {82,
135}, {88, 141}, {90, 143}, {112, 165}, {114, 167}, {120, 173}, {122, 175}, {17,
198}, {81, 134}, {49, 230}, {25, 206}, {89, 142}, {113, 166}, {121, 174}, {19,
200}, {51, 232}, {23, 204}, {83, 136}, {87, 140}, {115, 168}, {119, 172}, {20,
201}, {52, 233}, {22, 203}, {84, 137}, {86, 139}, {116, 169}, {118, 171}, {21,
202}, {53, 234}, {85, 138}, {117, 170}, {1, 234}, {32, 213}, {34, 215}, {40,
221}, {42, 223}, {96, 149}, {98, 151}, {104, 157}, {106, 159}, {33, 214}, {41,
222}, {97, 150}, {105, 158}, {35, 216}, {39, 220}, {99, 152}, {103, 156}, {36,
217}, {38, 219}, {100, 153}, {102, 155}, {37, 218}, {101, 154}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 54)(3, 107)(4, 160)(5, 213)(6, 32)(7, 85)(8, 138)(9, 191)(11, 63)(12,
116)(13, 169)(14, 222)(15, 41)(16, 94)(17, 147)(18, 200)(20, 72)(21, 125)(22,
178)(23, 231)(24, 50)(25, 103)(26, 156)(27, 209)(29, 81)(30, 134)(31, 187)(33,
59)(34, 112)(35, 165)(36, 218)(38, 90)(39, 143)(40, 196)(42, 68)(43, 121)(44,
174)(45, 227)(47, 99)(48, 152)(49, 205)(51, 77)(52, 130)(53, 183)(56, 108)(57,
161)(58, 214)(60, 86)(61, 139)(62, 192)(65, 117)(66, 170)(67, 223)(69, 95)(70,
148)(71, 201)(74, 126)(75, 179)(76, 232)(78, 104)(79, 157)(80, 210)(83, 135)(84,
188)(87, 113)(88, 166)(89, 219)(92, 144)(93, 197)(96, 122)(97, 175)(98,
228)(101, 153)(102, 206)(105, 131)(106, 184)(110, 162)(111, 215)(114, 140)(115,
193)(119, 171)(120, 224)(123, 149)(124, 202)(128, 180)(129, 233)(132, 158)(133,
211)(137, 189)(141, 167)(142, 220)(146, 198)(150, 176)(151, 229)(155, 207)(159,
185)(164, 216)(168, 194)(173, 225)(177, 203)(182, 234)(186, 212)(195, 221)(204,
230)
c: (2, 182)(3, 129)(4, 76)(5, 23)(6, 204)(7, 151)(8, 98)(9, 45)(10, 226)(11,
173)(12, 120)(13, 67)(15, 195)(16, 142)(17, 89)(18, 36)(19, 217)(20, 164)(21,
111)(22, 58)(24, 186)(25, 133)(26, 80)(28, 208)(29, 155)(30, 102)(31, 49)(32,
230)(33, 177)(34, 124)(35, 71)(37, 199)(38, 146)(39, 93)(41, 221)(42, 168)(43,
115)(44, 62)(46, 190)(47, 137)(48, 84)(50, 212)(51, 159)(52, 106)(54, 234)(55,
181)(56, 128)(57, 75)(59, 203)(60, 150)(61, 97)(63, 225)(64, 172)(65, 119)(68,
194)(69, 141)(70, 88)(72, 216)(73, 163)(74, 110)(77, 185)(78, 132)(81, 207)(82,
154)(83, 101)(85, 229)(86, 176)(87, 123)(90, 198)(91, 145)(94, 220)(95, 167)(96,
114)(99, 189)(100, 136)(103, 211)(104, 158)(107, 233)(108, 180)(109, 127)(112,
202)(113, 149)(116, 224)(117, 171)(121, 193)(122, 140)(125, 215)(126, 162)(130,
184)(134, 206)(135, 153)(138, 228)(139, 175)(143, 197)(147, 219)(148, 166)(152,
188)(156, 210)(160, 232)(161, 179)(165, 201)(169, 223)(174, 192)(178, 214)(187,
205)(191, 227)(200, 218)(213, 231)
C4[ 234, 2 ]
234
-1 2 234 182 54
-2 55 1 3 183
-3 56 2 4 184
-4 57 3 5 185
-5 58 4 6 186
-6 187 59 5 7
-7 188 60 6 8
-8 189 61 7 9
-9 190 62 8 10
-10 11 191 63 9
-11 12 192 64 10
-12 11 13 193 65
-13 66 12 14 194
-14 67 13 15 195
-15 68 14 16 196
-16 69 15 17 197
-17 198 70 16 18
-18 199 71 17 19
-19 200 72 18 20
-20 201 73 19 21
-21 22 202 74 20
-22 23 203 75 21
-23 22 24 204 76
-24 77 23 25 205
-25 78 24 26 206
-26 79 25 27 207
-27 80 26 28 208
-28 209 81 27 29
-29 210 82 28 30
-30 211 83 29 31
-31 212 84 30 32
-32 33 213 85 31
-33 34 214 86 32
-34 33 35 215 87
-35 88 34 36 216
-36 89 35 37 217
-37 90 36 38 218
-38 91 37 39 219
-39 220 92 38 40
-40 221 93 39 41
-41 222 94 40 42
-42 223 95 41 43
-43 44 224 96 42
-44 45 225 97 43
-45 44 46 226 98
-46 99 45 47 227
-47 100 46 48 228
-48 101 47 49 229
-49 102 48 50 230
-50 231 103 49 51
-51 232 104 50 52
-52 233 105 51 53
-53 234 106 52 54
-54 55 1 107 53
-55 56 2 108 54
-56 55 57 3 109
-57 110 56 58 4
-58 111 57 59 5
-59 112 58 60 6
-60 113 59 61 7
-61 114 60 62 8
-62 115 61 63 9
-63 116 62 64 10
-64 11 117 63 65
-65 66 12 118 64
-66 67 13 119 65
-67 66 68 14 120
-68 121 67 69 15
-69 122 68 70 16
-70 123 69 71 17
-71 124 70 72 18
-72 125 71 73 19
-73 126 72 74 20
-74 127 73 75 21
-75 22 128 74 76
-76 77 23 129 75
-77 78 24 130 76
-78 77 79 25 131
-79 132 78 80 26
-80 133 79 81 27
-81 134 80 82 28
-82 135 81 83 29
-83 136 82 84 30
-84 137 83 85 31
-85 138 84 86 32
-86 33 139 85 87
-87 88 34 140 86
-88 89 35 141 87
-89 88 90 36 142
-90 143 89 91 37
-91 144 90 92 38
-92 145 91 93 39
-93 146 92 94 40
-94 147 93 95 41
-95 148 94 96 42
-96 149 95 97 43
-97 44 150 96 98
-98 99 45 151 97
-99 100 46 152 98
-100 99 101 47 153
-101 154 100 102 48
-102 155 101 103 49
-103 156 102 104 50
-104 157 103 105 51
-105 158 104 106 52
-106 159 105 107 53
-107 160 106 108 54
-108 55 161 107 109
-109 110 56 162 108
-110 111 57 163 109
-111 110 112 58 164
-112 165 111 113 59
-113 166 112 114 60
-114 167 113 115 61
-115 168 114 116 62
-116 169 115 117 63
-117 170 116 118 64
-118 171 117 119 65
-119 66 172 118 120
-120 121 67 173 119
-121 122 68 174 120
-122 121 123 69 175
-123 176 122 124 70
-124 177 123 125 71
-125 178 124 126 72
-126 179 125 127 73
-127 180 126 128 74
-128 181 127 129 75
-129 182 128 130 76
-130 77 183 129 131
-131 132 78 184 130
-132 133 79 185 131
-133 132 134 80 186
-134 187 133 135 81
-135 188 134 136 82
-136 189 135 137 83
-137 190 136 138 84
-138 191 137 139 85
-139 192 138 140 86
-140 193 139 141 87
-141 88 194 140 142
-142 143 89 195 141
-143 144 90 196 142
-144 143 145 91 197
-145 198 144 146 92
-146 199 145 147 93
-147 200 146 148 94
-148 201 147 149 95
-149 202 148 150 96
-150 203 149 151 97
-151 204 150 152 98
-152 99 205 151 153
-153 154 100 206 152
-154 155 101 207 153
-155 154 156 102 208
-156 209 155 157 103
-157 210 156 158 104
-158 211 157 159 105
-159 212 158 160 106
-160 213 159 161 107
-161 214 160 162 108
-162 215 161 163 109
-163 110 216 162 164
-164 165 111 217 163
-165 166 112 218 164
-166 165 167 113 219
-167 220 166 168 114
-168 221 167 169 115
-169 222 168 170 116
-170 223 169 171 117
-171 224 170 172 118
-172 225 171 173 119
-173 226 172 174 120
-174 121 227 173 175
-175 176 122 228 174
-176 177 123 229 175
-177 176 178 124 230
-178 231 177 179 125
-179 232 178 180 126
-180 233 179 181 127
-181 234 180 182 128
-182 1 181 183 129
-183 2 182 184 130
-184 3 183 185 131
-185 132 4 184 186
-186 187 133 5 185
-187 188 134 6 186
-188 187 189 135 7
-189 188 190 136 8
-190 189 191 137 9
-191 190 192 138 10
-192 11 191 193 139
-193 12 192 194 140
-194 13 193 195 141
-195 14 194 196 142
-196 143 15 195 197
-197 198 144 16 196
-198 199 145 17 197
-199 198 200 146 18
-200 199 201 147 19
-201 200 202 148 20
-202 201 203 149 21
-203 22 202 204 150
-204 23 203 205 151
-205 24 204 206 152
-206 25 205 207 153
-207 154 26 206 208
-208 209 155 27 207
-209 210 156 28 208
-210 209 211 157 29
-211 210 212 158 30
-212 211 213 159 31
-213 212 214 160 32
-214 33 213 215 161
-215 34 214 216 162
-216 35 215 217 163
-217 36 216 218 164
-218 165 37 217 219
-219 220 166 38 218
-220 221 167 39 219
-221 220 222 168 40
-222 221 223 169 41
-223 222 224 170 42
-224 223 225 171 43
-225 44 224 226 172
-226 45 225 227 173
-227 46 226 228 174
-228 47 227 229 175
-229 176 48 228 230
-230 231 177 49 229
-231 232 178 50 230
-232 231 233 179 51
-233 232 234 180 52
-234 1 233 181 53
0