[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 234, 4 ] =
{4,4}_15,3.
(I) Following is a form readable by MAGMA:
g:=Graph<234|{ {2, 3}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198,
199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187},
{184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172,
173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161},
{158, 159}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144,
145}, {142, 143}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49},
{46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18,
19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34,
35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {76, 77}, {80, 81}, {82,
83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98,
99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111},
{112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124,
125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137},
{138, 139}, {140, 141}, {1, 2}, {233, 234}, {229, 230}, {225, 226}, {221, 222},
{217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193,
194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170},
{165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141,
142}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45,
46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97,
98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122},
{125, 126}, {129, 130}, {133, 134}, {137, 138}, {3, 4}, {227, 228}, {219, 220},
{211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20},
{27, 28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107,
108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {231, 232}, {215,
216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23,
24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207,
208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223,
224}, {159, 160}, {95, 96}, {1, 79}, {145, 223}, {144, 222}, {49, 127}, {48,
126}, {16, 94}, {17, 95}, {32, 110}, {33, 111}, {128, 206}, {129, 207}, {1, 78},
{2, 80}, {143, 221}, {142, 220}, {47, 125}, {46, 124}, {3, 81}, {6, 84}, {7,
85}, {10, 88}, {11, 89}, {14, 92}, {15, 93}, {34, 112}, {35, 113}, {38, 116},
{39, 117}, {42, 120}, {43, 121}, {130, 208}, {131, 209}, {134, 212}, {135, 213},
{138, 216}, {139, 217}, {4, 82}, {141, 219}, {140, 218}, {45, 123}, {5, 83},
{12, 90}, {13, 91}, {36, 114}, {37, 115}, {44, 122}, {132, 210}, {133, 211}, {8,
86}, {9, 87}, {40, 118}, {41, 119}, {136, 214}, {137, 215}, {18, 96}, {155,
233}, {154, 232}, {151, 229}, {150, 228}, {147, 225}, {146, 224}, {19, 97}, {22,
100}, {23, 101}, {26, 104}, {27, 105}, {30, 108}, {31, 109}, {20, 98}, {156,
234}, {149, 227}, {148, 226}, {21, 99}, {28, 106}, {29, 107}, {157, 234}, {24,
102}, {153, 231}, {152, 230}, {25, 103}, {63, 64}, {191, 192}, {4, 175}, {16,
187}, {20, 191}, {1, 172}, {3, 174}, {17, 188}, {19, 190}, {2, 173}, {18, 189},
{50, 128}, {63, 141}, {62, 140}, {59, 137}, {58, 136}, {55, 133}, {54, 132},
{51, 129}, {114, 192}, {115, 193}, {118, 196}, {119, 197}, {122, 200}, {123,
201}, {126, 204}, {127, 205}, {5, 176}, {7, 178}, {13, 184}, {15, 186}, {52,
130}, {61, 139}, {60, 138}, {53, 131}, {116, 194}, {117, 195}, {124, 202}, {125,
203}, {6, 177}, {14, 185}, {8, 179}, {12, 183}, {9, 180}, {11, 182}, {56, 134},
{57, 135}, {120, 198}, {121, 199}, {10, 181}, {64, 142}, {65, 143}, {80, 158},
{81, 159}, {96, 174}, {97, 175}, {112, 190}, {113, 191}, {66, 144}, {71, 149},
{70, 148}, {67, 145}, {74, 152}, {75, 153}, {78, 156}, {79, 157}, {98, 176},
{99, 177}, {102, 180}, {103, 181}, {106, 184}, {107, 185}, {110, 188}, {111,
189}, {79, 156}, {21, 192}, {63, 234}, {61, 232}, {55, 226}, {53, 224}, {23,
194}, {29, 200}, {31, 202}, {68, 146}, {69, 147}, {76, 154}, {77, 155}, {100,
178}, {101, 179}, {108, 186}, {109, 187}, {22, 193}, {62, 233}, {54, 225}, {30,
201}, {24, 195}, {60, 231}, {56, 227}, {28, 199}, {25, 196}, {66, 159}, {64,
157}, {59, 230}, {57, 228}, {27, 198}, {72, 150}, {73, 151}, {104, 182}, {105,
183}, {26, 197}, {65, 158}, {58, 229}, {67, 160}, {71, 164}, {75, 168}, {68,
161}, {70, 163}, {76, 169}, {78, 171}, {69, 162}, {77, 170}, {32, 203}, {52,
223}, {48, 219}, {36, 207}, {33, 204}, {72, 165}, {51, 222}, {49, 220}, {35,
206}, {74, 167}, {34, 205}, {73, 166}, {50, 221}, {82, 160}, {83, 161}, {86,
164}, {87, 165}, {90, 168}, {91, 169}, {94, 172}, {95, 173}, {37, 208}, {47,
218}, {45, 216}, {39, 210}, {84, 162}, {85, 163}, {92, 170}, {93, 171}, {38,
209}, {46, 217}, {40, 211}, {44, 215}, {41, 212}, {43, 214}, {88, 166}, {89,
167}, {42, 213}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78)(79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156)(157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 79, 78, 172)(3, 157, 77, 94)(4, 64, 76, 16)(5, 142, 75, 187)(6, 220, 74,
109)(7, 49, 73, 31)(8, 127, 72, 202)(9, 205, 71, 124)(10, 34, 70, 46)(11, 112,
69, 217)(12, 190, 68, 139)(13, 19, 67, 61)(14, 97, 66, 232)(15, 175, 65,
154)(17, 82, 63, 169)(18, 160, 62, 91)(20, 145, 60, 184)(21, 223, 59, 106)(22,
52, 58, 28)(23, 130, 57, 199)(24, 208, 56, 121)(25, 37, 55, 43)(26, 115, 54,
214)(27, 193, 53, 136)(29, 100, 51, 229)(30, 178, 50, 151)(32, 85, 48, 166)(33,
163, 47, 88)(35, 148, 45, 181)(36, 226, 44, 103)(38, 133, 42, 196)(39, 211, 41,
118)(80, 156, 171, 173)(81, 234, 170, 95)(83, 141, 168, 188)(84, 219, 167,
110)(86, 126, 165, 203)(87, 204, 164, 125)(89, 111, 162, 218)(90, 189, 161,
140)(92, 96, 159, 233)(93, 174, 158, 155)(98, 144, 231, 185)(99, 222, 230,
107)(101, 129, 228, 200)(102, 207, 227, 122)(104, 114, 225, 215)(105, 192, 224,
137)(108, 177, 221, 152)(113, 147, 216, 182)(116, 132, 213, 197)(117, 210, 212,
119)(120, 195, 209, 134)(123, 180, 206, 149)(128, 150, 201, 179)(131, 135, 198,
194)(138, 183, 191, 146)(143, 153, 186, 176)
C4[ 234, 4 ]
234
-1 78 2 79 172
-2 1 3 80 173
-3 2 4 81 174
-4 3 5 82 175
-5 176 4 6 83
-6 177 5 7 84
-7 178 6 8 85
-8 179 7 9 86
-9 180 8 10 87
-10 11 88 181 9
-11 12 89 182 10
-12 11 13 90 183
-13 12 14 91 184
-14 13 15 92 185
-15 14 16 93 186
-16 187 15 17 94
-17 188 16 18 95
-18 189 17 19 96
-19 190 18 20 97
-20 191 19 21 98
-21 22 99 192 20
-22 23 100 193 21
-23 22 24 101 194
-24 23 25 102 195
-25 24 26 103 196
-26 25 27 104 197
-27 198 26 28 105
-28 199 27 29 106
-29 200 28 30 107
-30 201 29 31 108
-31 202 30 32 109
-32 33 110 203 31
-33 34 111 204 32
-34 33 35 112 205
-35 34 36 113 206
-36 35 37 114 207
-37 36 38 115 208
-38 209 37 39 116
-39 210 38 40 117
-40 211 39 41 118
-41 212 40 42 119
-42 213 41 43 120
-43 44 121 214 42
-44 45 122 215 43
-45 44 46 123 216
-46 45 47 124 217
-47 46 48 125 218
-48 47 49 126 219
-49 220 48 50 127
-50 221 49 51 128
-51 222 50 52 129
-52 223 51 53 130
-53 224 52 54 131
-54 55 132 225 53
-55 56 133 226 54
-56 55 57 134 227
-57 56 58 135 228
-58 57 59 136 229
-59 58 60 137 230
-60 231 59 61 138
-61 232 60 62 139
-62 233 61 63 140
-63 234 62 64 141
-64 157 63 65 142
-65 66 143 158 64
-66 67 144 159 65
-67 66 68 145 160
-68 67 69 146 161
-69 68 70 147 162
-70 69 71 148 163
-71 70 72 149 164
-72 165 71 73 150
-73 166 72 74 151
-74 167 73 75 152
-75 168 74 76 153
-76 77 154 169 75
-77 78 155 170 76
-78 77 1 156 171
-79 1 156 80 157
-80 2 79 81 158
-81 3 80 82 159
-82 4 81 83 160
-83 5 82 84 161
-84 6 83 85 162
-85 7 84 86 163
-86 8 85 87 164
-87 88 165 9 86
-88 89 166 10 87
-89 11 88 90 167
-90 12 89 91 168
-91 13 90 92 169
-92 14 91 93 170
-93 15 92 94 171
-94 16 93 95 172
-95 17 94 96 173
-96 18 95 97 174
-97 19 96 98 175
-98 99 176 20 97
-99 100 177 21 98
-100 22 99 101 178
-101 23 100 102 179
-102 24 101 103 180
-103 25 102 104 181
-104 26 103 105 182
-105 27 104 106 183
-106 28 105 107 184
-107 29 106 108 185
-108 30 107 109 186
-109 110 187 31 108
-110 111 188 32 109
-111 33 110 112 189
-112 34 111 113 190
-113 35 112 114 191
-114 36 113 115 192
-115 37 114 116 193
-116 38 115 117 194
-117 39 116 118 195
-118 40 117 119 196
-119 41 118 120 197
-120 121 198 42 119
-121 122 199 43 120
-122 44 121 123 200
-123 45 122 124 201
-124 46 123 125 202
-125 47 124 126 203
-126 48 125 127 204
-127 49 126 128 205
-128 50 127 129 206
-129 51 128 130 207
-130 52 129 131 208
-131 132 209 53 130
-132 133 210 54 131
-133 55 132 134 211
-134 56 133 135 212
-135 57 134 136 213
-136 58 135 137 214
-137 59 136 138 215
-138 60 137 139 216
-139 61 138 140 217
-140 62 139 141 218
-141 63 140 142 219
-142 143 220 64 141
-143 144 221 65 142
-144 66 143 145 222
-145 67 144 146 223
-146 68 145 147 224
-147 69 146 148 225
-148 70 147 149 226
-149 71 148 150 227
-150 72 149 151 228
-151 73 150 152 229
-152 74 151 153 230
-153 154 231 75 152
-154 155 232 76 153
-155 77 154 156 233
-156 78 155 79 234
-157 79 234 158 64
-158 80 157 159 65
-159 66 81 158 160
-160 67 82 159 161
-161 68 83 160 162
-162 69 84 161 163
-163 70 85 162 164
-164 165 71 86 163
-165 166 72 87 164
-166 88 165 167 73
-167 89 166 168 74
-168 90 167 169 75
-169 91 168 170 76
-170 77 92 169 171
-171 78 93 170 172
-172 1 94 171 173
-173 2 95 172 174
-174 3 96 173 175
-175 176 4 97 174
-176 177 5 98 175
-177 99 176 178 6
-178 100 177 179 7
-179 101 178 180 8
-180 102 179 181 9
-181 103 180 182 10
-182 11 104 181 183
-183 12 105 182 184
-184 13 106 183 185
-185 14 107 184 186
-186 187 15 108 185
-187 188 16 109 186
-188 110 187 189 17
-189 111 188 190 18
-190 112 189 191 19
-191 113 190 192 20
-192 114 191 193 21
-193 22 115 192 194
-194 23 116 193 195
-195 24 117 194 196
-196 25 118 195 197
-197 198 26 119 196
-198 199 27 120 197
-199 121 198 200 28
-200 122 199 201 29
-201 123 200 202 30
-202 124 201 203 31
-203 125 202 204 32
-204 33 126 203 205
-205 34 127 204 206
-206 35 128 205 207
-207 36 129 206 208
-208 209 37 130 207
-209 210 38 131 208
-210 132 209 211 39
-211 133 210 212 40
-212 134 211 213 41
-213 135 212 214 42
-214 136 213 215 43
-215 44 137 214 216
-216 45 138 215 217
-217 46 139 216 218
-218 47 140 217 219
-219 220 48 141 218
-220 221 49 142 219
-221 143 220 222 50
-222 144 221 223 51
-223 145 222 224 52
-224 146 223 225 53
-225 147 224 226 54
-226 55 148 225 227
-227 56 149 226 228
-228 57 150 227 229
-229 58 151 228 230
-230 231 59 152 229
-231 232 60 153 230
-232 154 231 233 61
-233 155 232 234 62
-234 156 233 157 63
0