C4graphConstructions for C4[ 234, 6 ] = PS(18,13;3)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 234, 6 ]. See Glossary for some detail.

PS( 18, 13; 3) = PS( 18, 13; 4) = PS( 9, 26; 3)

      = PS( 9, 26; 9) = PS( 18, 26; 3) = PS( 18, 26; 9)

      = UG(ATD[234, 1]) = UG(ATD[234, 2]) = MG(Cmap(234, 11) { 18, 18| 18}_ 26)

      = MG(Cmap(234, 12) { 18, 18| 18}_ 26) = MG(Cmap(234, 13) { 18, 18| 18}_ 26) = MG(Cmap(234, 14) { 18, 18| 18}_ 26)

      = DG(Cmap(117, 7) { 18, 9| 18}_ 26) = DG(Cmap(117, 8) { 18, 9| 18}_ 26) = B(PS( 9, 13; 3))

      = HT[234, 1]

Cyclic coverings

mod 78:
123
1 - 0 12 0 30
2 0 66 - 1 43
3 0 48 35 77 -

mod 18:
123456789 10111213
1 - 0 - - 0 - - - - 0 - - 0
2 0 - 1 - 3 1 - - - - - - -
3 - 17 - - - 3 - 1 - 1 - - -
4 - - - - - 0 - - 0 - 0 2 - -
5 0 15 - - - - 17 - - - - 17 -
6 - 17 15 0 - - - - - - 17 - -
7 - - - - 1 - 1 17 - - - - 15 -
8 - - 17 - - - - 1 17 - 3 - - -
9 - - - 0 - - - - - - 3 17 1
10 0 - 17 - - - - 15 - - - - 15
11 - - - 0 16 - 1 - - 15 - - - -
12 - - - - 1 - 3 - 1 - - - 17
13 0 - - - - - - - 17 3 - 1 -

mod 18:
123456789 10111213
1 - 0 - - 0 - - - - 0 - - 0
2 0 - - - - - - - 1 3 - 1 -
3 - - - - 0 - 0 - 2 - - - 16
4 - - - 1 17 - 0 - - 0 - - - -
5 0 - 0 - - - - 17 - - - - 15
6 - - - 0 - - - - - - 1 17 1
7 - - 0 - - - - 1 3 - 3 - - -
8 - - - - 1 - 15 17 - - - - 15 -
9 - 17 16 0 - - - - - - 15 - -
10 0 15 - - - - 15 - - - - 17 -
11 - - - - - 17 - - 3 - 1 17 - -
12 - 17 - - - 1 - 3 - 1 - - -
13 0 - 2 - 3 17 - - - - - - -