[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 238, 2 ] =
C_238(1,69).
(I) Following is a form readable by MAGMA:
g:=Graph<238|{ {2, 3}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228,
229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217},
{214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202,
203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191},
{188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176,
177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165},
{162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150,
151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {72, 73}, {70, 71}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52,
53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45},
{74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89},
{90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104,
105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117},
{118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130,
131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {1, 2}, {237,
238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214},
{209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185,
186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162},
{157, 158}, {153, 154}, {149, 150}, {145, 146}, {73, 74}, {69, 70}, {65, 66},
{61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78},
{81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109,
110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134},
{137, 138}, {141, 142}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212},
{203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155,
156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28},
{35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115,
116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {231, 232}, {215, 216}, {199,
200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39,
40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175,
176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159,
160}, {95, 96}, {2, 71}, {168, 237}, {162, 231}, {160, 229}, {154, 223}, {152,
221}, {146, 215}, {144, 213}, {58, 127}, {56, 125}, {50, 119}, {48, 117}, {8,
77}, {10, 79}, {16, 85}, {18, 87}, {24, 93}, {26, 95}, {32, 101}, {34, 103},
{40, 109}, {42, 111}, {128, 197}, {130, 199}, {136, 205}, {138, 207}, {1, 70},
{169, 238}, {161, 230}, {153, 222}, {145, 214}, {57, 126}, {49, 118}, {9, 78},
{17, 86}, {25, 94}, {33, 102}, {41, 110}, {129, 198}, {137, 206}, {3, 72}, {167,
236}, {163, 232}, {151, 220}, {147, 216}, {55, 124}, {51, 120}, {7, 76}, {19,
88}, {23, 92}, {35, 104}, {39, 108}, {131, 200}, {135, 204}, {4, 73}, {166,
235}, {164, 233}, {150, 219}, {148, 217}, {54, 123}, {52, 121}, {6, 75}, {20,
89}, {22, 91}, {36, 105}, {38, 107}, {132, 201}, {134, 203}, {5, 74}, {165,
234}, {149, 218}, {53, 122}, {21, 90}, {37, 106}, {133, 202}, {11, 80}, {143,
212}, {47, 116}, {15, 84}, {43, 112}, {139, 208}, {12, 81}, {142, 211}, {46,
115}, {14, 83}, {44, 113}, {140, 209}, {13, 82}, {141, 210}, {45, 114}, {27,
96}, {159, 228}, {155, 224}, {31, 100}, {28, 97}, {158, 227}, {156, 225}, {30,
99}, {29, 98}, {191, 192}, {157, 226}, {63, 64}, {2, 171}, {68, 237}, {66, 235},
{64, 233}, {4, 173}, {6, 175}, {16, 185}, {18, 187}, {20, 189}, {22, 191}, {1,
170}, {69, 238}, {65, 234}, {5, 174}, {17, 186}, {21, 190}, {3, 172}, {67, 236},
{19, 188}, {7, 176}, {15, 184}, {8, 177}, {10, 179}, {12, 181}, {14, 183}, {9,
178}, {63, 132}, {59, 128}, {13, 182}, {123, 192}, {127, 196}, {60, 129}, {62,
131}, {124, 193}, {126, 195}, {11, 180}, {61, 130}, {125, 194}, {64, 133}, {72,
141}, {66, 135}, {74, 143}, {80, 149}, {82, 151}, {88, 157}, {90, 159}, {96,
165}, {98, 167}, {104, 173}, {106, 175}, {112, 181}, {114, 183}, {120, 189},
{122, 191}, {65, 134}, {73, 142}, {81, 150}, {89, 158}, {97, 166}, {105, 174},
{113, 182}, {121, 190}, {67, 136}, {71, 140}, {83, 152}, {87, 156}, {99, 168},
{103, 172}, {115, 184}, {119, 188}, {68, 137}, {70, 139}, {84, 153}, {86, 155},
{100, 169}, {102, 171}, {116, 185}, {118, 187}, {69, 138}, {85, 154}, {101,
170}, {117, 186}, {23, 192}, {63, 232}, {55, 224}, {31, 200}, {24, 193}, {62,
231}, {60, 229}, {58, 227}, {56, 225}, {26, 195}, {28, 197}, {30, 199}, {25,
194}, {61, 230}, {57, 226}, {29, 198}, {75, 144}, {79, 148}, {107, 176}, {111,
180}, {76, 145}, {78, 147}, {108, 177}, {110, 179}, {27, 196}, {59, 228}, {77,
146}, {109, 178}, {32, 201}, {54, 223}, {52, 221}, {50, 219}, {48, 217}, {34,
203}, {36, 205}, {38, 207}, {33, 202}, {53, 222}, {49, 218}, {37, 206}, {1,
238}, {51, 220}, {35, 204}, {39, 208}, {47, 216}, {40, 209}, {46, 215}, {42,
211}, {44, 213}, {41, 210}, {45, 214}, {91, 160}, {95, 164}, {92, 161}, {94,
163}, {43, 212}, {93, 162}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 70)(3, 139)(4, 208)(5, 39)(6, 108)(7, 177)(9, 77)(10, 146)(11, 215)(12,
46)(13, 115)(14, 184)(16, 84)(17, 153)(18, 222)(19, 53)(20, 122)(21, 191)(23,
91)(24, 160)(25, 229)(26, 60)(27, 129)(28, 198)(30, 98)(31, 167)(32, 236)(33,
67)(34, 136)(35, 205)(37, 105)(38, 174)(40, 74)(41, 143)(42, 212)(44, 112)(45,
181)(47, 81)(48, 150)(49, 219)(51, 119)(52, 188)(54, 88)(55, 157)(56, 226)(58,
126)(59, 195)(61, 95)(62, 164)(63, 233)(65, 133)(66, 202)(68, 102)(69, 171)(72,
140)(73, 209)(75, 109)(76, 178)(79, 147)(80, 216)(82, 116)(83, 185)(86, 154)(87,
223)(89, 123)(90, 192)(93, 161)(94, 230)(96, 130)(97, 199)(100, 168)(101,
237)(103, 137)(104, 206)(107, 175)(110, 144)(111, 213)(114, 182)(117, 151)(118,
220)(121, 189)(124, 158)(125, 227)(128, 196)(131, 165)(132, 234)(135, 203)(138,
172)(142, 210)(145, 179)(149, 217)(152, 186)(156, 224)(159, 193)(163, 231)(166,
200)(170, 238)(173, 207)(180, 214)(187, 221)(194, 228)(201, 235) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238)
c: (2, 170)(3, 101)(4, 32)(5, 201)(6, 132)(7, 63)(8, 232)(9, 163)(10, 94)(11,
25)(12, 194)(13, 125)(14, 56)(15, 225)(16, 156)(17, 87)(19, 187)(20, 118)(21,
49)(22, 218)(23, 149)(24, 80)(26, 180)(27, 111)(28, 42)(29, 211)(30, 142)(31,
73)(33, 173)(34, 104)(36, 204)(37, 135)(38, 66)(39, 235)(40, 166)(41, 97)(43,
197)(44, 128)(45, 59)(46, 228)(47, 159)(48, 90)(50, 190)(51, 121)(53, 221)(54,
152)(55, 83)(57, 183)(58, 114)(60, 214)(61, 145)(62, 76)(64, 176)(65, 107)(67,
207)(68, 138)(70, 238)(71, 169)(72, 100)(74, 200)(75, 131)(77, 231)(78, 162)(79,
93)(81, 193)(82, 124)(84, 224)(85, 155)(88, 186)(89, 117)(91, 217)(92, 148)(95,
179)(96, 110)(98, 210)(99, 141)(102, 172)(105, 203)(106, 134)(108, 234)(109,
165)(112, 196)(113, 127)(115, 227)(116, 158)(119, 189)(122, 220)(123, 151)(126,
182)(129, 213)(130, 144)(133, 175)(136, 206)(139, 237)(140, 168)(143, 199)(146,
230)(147, 161)(150, 192)(153, 223)(157, 185)(160, 216)(164, 178)(167, 209)(174,
202)(177, 233)(181, 195)(184, 226)(191, 219)(198, 212)(208, 236)(215, 229)
C4[ 238, 2 ]
238
-1 2 70 170 238
-2 1 3 71 171
-3 2 4 72 172
-4 3 5 73 173
-5 4 6 74 174
-6 5 7 75 175
-7 176 6 8 76
-8 77 177 7 9
-9 78 178 8 10
-10 11 79 179 9
-11 12 80 180 10
-12 11 13 81 181
-13 12 14 82 182
-14 13 15 83 183
-15 14 16 84 184
-16 15 17 85 185
-17 16 18 86 186
-18 187 17 19 87
-19 88 188 18 20
-20 89 189 19 21
-21 22 90 190 20
-22 23 91 191 21
-23 22 24 92 192
-24 23 25 93 193
-25 24 26 94 194
-26 25 27 95 195
-27 26 28 96 196
-28 27 29 97 197
-29 198 28 30 98
-30 99 199 29 31
-31 100 200 30 32
-32 33 101 201 31
-33 34 102 202 32
-34 33 35 103 203
-35 34 36 104 204
-36 35 37 105 205
-37 36 38 106 206
-38 37 39 107 207
-39 38 40 108 208
-40 209 39 41 109
-41 110 210 40 42
-42 111 211 41 43
-43 44 112 212 42
-44 45 113 213 43
-45 44 46 114 214
-46 45 47 115 215
-47 46 48 116 216
-48 47 49 117 217
-49 48 50 118 218
-50 49 51 119 219
-51 220 50 52 120
-52 121 221 51 53
-53 122 222 52 54
-54 55 123 223 53
-55 56 124 224 54
-56 55 57 125 225
-57 56 58 126 226
-58 57 59 127 227
-59 58 60 128 228
-60 59 61 129 229
-61 60 62 130 230
-62 231 61 63 131
-63 132 232 62 64
-64 133 233 63 65
-65 66 134 234 64
-66 67 135 235 65
-67 66 68 136 236
-68 67 69 137 237
-69 68 70 138 238
-70 1 69 71 139
-71 2 70 72 140
-72 3 71 73 141
-73 4 72 74 142
-74 143 5 73 75
-75 144 6 74 76
-76 77 145 7 75
-77 78 146 8 76
-78 77 79 147 9
-79 78 80 148 10
-80 11 79 81 149
-81 12 80 82 150
-82 13 81 83 151
-83 14 82 84 152
-84 15 83 85 153
-85 154 16 84 86
-86 155 17 85 87
-87 88 156 18 86
-88 89 157 19 87
-89 88 90 158 20
-90 89 91 159 21
-91 22 90 92 160
-92 23 91 93 161
-93 24 92 94 162
-94 25 93 95 163
-95 26 94 96 164
-96 165 27 95 97
-97 166 28 96 98
-98 99 167 29 97
-99 100 168 30 98
-100 99 101 169 31
-101 100 102 170 32
-102 33 101 103 171
-103 34 102 104 172
-104 35 103 105 173
-105 36 104 106 174
-106 37 105 107 175
-107 176 38 106 108
-108 177 39 107 109
-109 110 178 40 108
-110 111 179 41 109
-111 110 112 180 42
-112 111 113 181 43
-113 44 112 114 182
-114 45 113 115 183
-115 46 114 116 184
-116 47 115 117 185
-117 48 116 118 186
-118 187 49 117 119
-119 188 50 118 120
-120 121 189 51 119
-121 122 190 52 120
-122 121 123 191 53
-123 122 124 192 54
-124 55 123 125 193
-125 56 124 126 194
-126 57 125 127 195
-127 58 126 128 196
-128 59 127 129 197
-129 198 60 128 130
-130 199 61 129 131
-131 132 200 62 130
-132 133 201 63 131
-133 132 134 202 64
-134 133 135 203 65
-135 66 134 136 204
-136 67 135 137 205
-137 68 136 138 206
-138 69 137 139 207
-139 70 138 140 208
-140 209 71 139 141
-141 210 72 140 142
-142 143 211 73 141
-143 144 212 74 142
-144 143 145 213 75
-145 144 146 214 76
-146 77 145 147 215
-147 78 146 148 216
-148 79 147 149 217
-149 80 148 150 218
-150 81 149 151 219
-151 220 82 150 152
-152 221 83 151 153
-153 154 222 84 152
-154 155 223 85 153
-155 154 156 224 86
-156 155 157 225 87
-157 88 156 158 226
-158 89 157 159 227
-159 90 158 160 228
-160 91 159 161 229
-161 92 160 162 230
-162 231 93 161 163
-163 232 94 162 164
-164 165 233 95 163
-165 166 234 96 164
-166 165 167 235 97
-167 166 168 236 98
-168 99 167 169 237
-169 100 168 170 238
-170 1 101 169 171
-171 2 102 170 172
-172 3 103 171 173
-173 4 104 172 174
-174 5 105 173 175
-175 176 6 106 174
-176 177 7 107 175
-177 176 178 8 108
-178 177 179 9 109
-179 110 178 180 10
-180 11 111 179 181
-181 12 112 180 182
-182 13 113 181 183
-183 14 114 182 184
-184 15 115 183 185
-185 16 116 184 186
-186 187 17 117 185
-187 188 18 118 186
-188 187 189 19 119
-189 188 190 20 120
-190 121 189 191 21
-191 22 122 190 192
-192 23 123 191 193
-193 24 124 192 194
-194 25 125 193 195
-195 26 126 194 196
-196 27 127 195 197
-197 198 28 128 196
-198 199 29 129 197
-199 198 200 30 130
-200 199 201 31 131
-201 132 200 202 32
-202 33 133 201 203
-203 34 134 202 204
-204 35 135 203 205
-205 36 136 204 206
-206 37 137 205 207
-207 38 138 206 208
-208 209 39 139 207
-209 210 40 140 208
-210 209 211 41 141
-211 210 212 42 142
-212 143 211 213 43
-213 44 144 212 214
-214 45 145 213 215
-215 46 146 214 216
-216 47 147 215 217
-217 48 148 216 218
-218 49 149 217 219
-219 220 50 150 218
-220 221 51 151 219
-221 220 222 52 152
-222 221 223 53 153
-223 154 222 224 54
-224 55 155 223 225
-225 56 156 224 226
-226 57 157 225 227
-227 58 158 226 228
-228 59 159 227 229
-229 60 160 228 230
-230 231 61 161 229
-231 232 62 162 230
-232 231 233 63 163
-233 232 234 64 164
-234 165 233 235 65
-235 66 166 234 236
-236 67 167 235 237
-237 68 168 236 238
-238 1 69 169 237
0