C4graphGraph forms for C4 [ 240, 1 ] = W(120,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 1 ] = W(120,2).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {1, 2}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {8, 127}, {1, 120}, {2, 123}, {3, 122}, {4, 125}, {5, 124}, {6, 127}, {7, 126}, {1, 122}, {2, 121}, {5, 126}, {6, 125}, {3, 124}, {191, 192}, {63, 64}, {4, 123}, {7, 128}, {119, 240}, {63, 184}, {55, 176}, {47, 168}, {15, 136}, {23, 144}, {31, 152}, {39, 160}, {71, 192}, {79, 200}, {87, 208}, {95, 216}, {103, 224}, {111, 232}, {8, 129}, {121, 240}, {63, 182}, {62, 183}, {61, 180}, {60, 181}, {59, 178}, {58, 179}, {57, 176}, {56, 177}, {47, 166}, {46, 167}, {45, 164}, {44, 165}, {43, 162}, {42, 163}, {41, 160}, {9, 128}, {10, 131}, {11, 130}, {12, 133}, {13, 132}, {14, 135}, {15, 134}, {24, 145}, {25, 144}, {26, 147}, {27, 146}, {28, 149}, {29, 148}, {30, 151}, {31, 150}, {40, 161}, {72, 193}, {73, 192}, {74, 195}, {75, 194}, {76, 197}, {77, 196}, {78, 199}, {79, 198}, {88, 209}, {89, 208}, {90, 211}, {91, 210}, {92, 213}, {93, 212}, {94, 215}, {95, 214}, {104, 225}, {105, 224}, {106, 227}, {107, 226}, {108, 229}, {109, 228}, {110, 231}, {111, 230}, {9, 130}, {62, 181}, {61, 182}, {58, 177}, {57, 178}, {46, 165}, {45, 166}, {42, 161}, {41, 162}, {10, 129}, {13, 134}, {14, 133}, {25, 146}, {26, 145}, {29, 150}, {30, 149}, {73, 194}, {74, 193}, {77, 198}, {78, 197}, {89, 210}, {90, 209}, {93, 214}, {94, 213}, {105, 226}, {106, 225}, {109, 230}, {110, 229}, {11, 132}, {60, 179}, {59, 180}, {44, 163}, {43, 164}, {12, 131}, {27, 148}, {28, 147}, {75, 196}, {76, 195}, {91, 212}, {92, 211}, {107, 228}, {108, 227}, {16, 135}, {120, 239}, {112, 231}, {56, 175}, {48, 167}, {24, 143}, {80, 199}, {88, 207}, {16, 137}, {119, 238}, {118, 239}, {117, 236}, {116, 237}, {115, 234}, {114, 235}, {113, 232}, {112, 233}, {55, 174}, {54, 175}, {53, 172}, {52, 173}, {51, 170}, {50, 171}, {49, 168}, {48, 169}, {17, 136}, {18, 139}, {19, 138}, {20, 141}, {21, 140}, {22, 143}, {23, 142}, {80, 201}, {81, 200}, {82, 203}, {83, 202}, {84, 205}, {85, 204}, {86, 207}, {87, 206}, {17, 138}, {118, 237}, {117, 238}, {114, 233}, {113, 234}, {54, 173}, {53, 174}, {50, 169}, {49, 170}, {18, 137}, {21, 142}, {22, 141}, {81, 202}, {82, 201}, {85, 206}, {86, 205}, {19, 140}, {116, 235}, {115, 236}, {52, 171}, {51, 172}, {20, 139}, {83, 204}, {84, 203}, {32, 151}, {40, 159}, {96, 215}, {104, 223}, {32, 153}, {33, 152}, {34, 155}, {35, 154}, {36, 157}, {37, 156}, {38, 159}, {39, 158}, {96, 217}, {97, 216}, {98, 219}, {99, 218}, {100, 221}, {101, 220}, {102, 223}, {103, 222}, {33, 154}, {34, 153}, {37, 158}, {38, 157}, {97, 218}, {98, 217}, {101, 222}, {102, 221}, {35, 156}, {36, 155}, {99, 220}, {100, 219}, {1, 240}, {64, 183}, {72, 191}, {64, 185}, {67, 186}, {66, 187}, {65, 184}, {68, 189}, {69, 188}, {70, 191}, {71, 190}, {65, 186}, {66, 185}, {69, 190}, {70, 189}, {67, 188}, {127, 128}, {68, 187} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (7, 127)
b: (2, 120)(3, 119)(4, 118)(5, 117)(6, 116)(7, 115)(8, 114)(9, 113)(10, 112)(11, 111)(12, 110)(13, 109)(14, 108)(15, 107)(16, 106)(17, 105)(18, 104)(19, 103)(20, 102)(21, 101)(22, 100)(23, 99)(24, 98)(25, 97)(26, 96)(27, 95)(28, 94)(29, 93)(30, 92)(31, 91)(32, 90)(33, 89)(34, 88)(35, 87)(36, 86)(37, 85)(38, 84)(39, 83)(40, 82)(41, 81)(42, 80)(43, 79)(44, 78)(45, 77)(46, 76)(47, 75)(48, 74)(49, 73)(50, 72)(51, 71)(52, 70)(53, 69)(54, 68)(55, 67)(56, 66)(57, 65)(58, 64)(59, 63)(60, 62)(122, 240)(123, 239)(124, 238)(125, 237)(126, 236)(127, 235)(128, 234)(129, 233)(130, 232)(131, 231)(132, 230)(133, 229)(134, 228)(135, 227)(136, 226)(137, 225)(138, 224)(139, 223)(140, 222)(141, 221)(142, 220)(143, 219)(144, 218)(145, 217)(146, 216)(147, 215)(148, 214)(149, 213)(150, 212)(151, 211)(152, 210)(153, 209)(154, 208)(155, 207)(156, 206)(157, 205)(158, 204)(159, 203)(160, 202)(161, 201)(162, 200)(163, 199)(164, 198)(165, 197)(166, 196)(167, 195)(168, 194)(169, 193)(170, 192)(171, 191)(172, 190)(173, 189)(174, 188)(175, 187)(176, 186)(177, 185)(178, 184)(179, 183)(180, 182)
c: (115, 235)
d: (84, 204)
e: (18, 138)
f: (49, 169)
g: (2, 122)
h: (67, 187)
m: (4, 124)
n1: (13, 133)
a1: (110, 230)
b1: (79, 199)
c1: (48, 168)
d1: (9, 129)
e1: (106, 226)
f1: (44, 164)
g1: (75, 195)
h1: (117, 237)
m1: (86, 206)
n2: (24, 144)
a2: (55, 175)
b2: (100, 220)
c2: (34, 154)
d2: (104, 224)
e2: (38, 158)
f2: (66, 186)
g2: (111, 231)
h2: (14, 134)
m2: (80, 200)
n3: (45, 165)
a3: (95, 215)
b3: (29, 149)
c3: (64, 184)
d3: (5, 125)
e3: (3, 123)
f3: (19, 139)
g3: (116, 236)
h3: (81, 201)
m3: (50, 170)
n4: (70, 190)
a4: (102, 222)
b4: (40, 160)
c4: (114, 234)
d4: (17, 137)
e4: (83, 203)
f4: (52, 172)
g4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
h4: (27, 147)
m4: (89, 209)
n5: (58, 178)
a5: (11, 131)
b5: (108, 228)
c5: (42, 162)
d5: (73, 193)
e5: (93, 213)
f5: (31, 151)
g5: (62, 182)
h5: (69, 189)
m5: (109, 229)
n6: (16, 136)
a6: (78, 198)
b6: (47, 167)
c6: (65, 185)
d6: (101, 221)
e6: (39, 159)
f6: (21, 141)
g6: (87, 207)
h6: (118, 238)
m6: (56, 176)
n7: (28, 148)
a7: (90, 210)
b7: (112, 232)
c7: (15, 135)
d7: (77, 197)
e7: (46, 166)
f7: (71, 191)
g7: (103, 223)
h7: (37, 157)
m7: (25, 145)
n8: (91, 211)
a8: (60, 180)
b8: (23, 143)
c8: (85, 205)
d8: (54, 174)
e8: (120, 240)
f8: (97, 217)
g8: (35, 155)
h8: (8, 128)
m8: (98, 218)
n9: (36, 156)
a9: (72, 192)
b9: (99, 219)
c9: (33, 153)
d9: (26, 146)
e9: (92, 212)
f9: (57, 177)
g9: (94, 214)
h9: (32, 152)
m9: (63, 183)
n10: (10, 130)
a10: (107, 227)
b10: (41, 161)
c10: (76, 196)
d10: (12, 132)
e10: (105, 225)
f10: (43, 163)
g10: (74, 194)
h10: (68, 188)
m10: (113, 233)
n11: (20, 140)
a11: (82, 202)
b11: (51, 171)
c11: (96, 216)
d11: (30, 150)
e11: (61, 181)
f11: (22, 142)
g11: (6, 126)
h11: (88, 208)
m11: (119, 239)
n12: (53, 173)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 1 ]
240
-1 122 2 240 120
-2 121 1 123 3
-3 122 2 124 4
-4 123 3 125 5
-5 124 4 126 6
-6 125 5 127 7
-7 126 6 128 8
-8 127 7 129 9
-9 128 8 130 10
-10 11 129 9 131
-11 132 12 130 10
-12 11 133 13 131
-13 132 12 134 14
-14 133 13 135 15
-15 134 14 136 16
-16 135 15 137 17
-17 136 16 138 18
-18 137 17 139 19
-19 138 18 140 20
-20 139 19 141 21
-21 22 140 20 142
-22 143 23 141 21
-23 22 144 24 142
-24 143 23 145 25
-25 144 24 146 26
-26 145 25 147 27
-27 146 26 148 28
-28 147 27 149 29
-29 148 28 150 30
-30 149 29 151 31
-31 150 30 152 32
-32 33 151 31 153
-33 154 34 152 32
-34 33 155 35 153
-35 154 34 156 36
-36 155 35 157 37
-37 156 36 158 38
-38 157 37 159 39
-39 158 38 160 40
-40 159 39 161 41
-41 160 40 162 42
-42 161 41 163 43
-43 44 162 42 164
-44 165 45 163 43
-45 44 166 46 164
-46 165 45 167 47
-47 166 46 168 48
-48 167 47 169 49
-49 168 48 170 50
-50 169 49 171 51
-51 170 50 172 52
-52 171 51 173 53
-53 172 52 174 54
-54 55 173 53 175
-55 176 56 174 54
-56 55 177 57 175
-57 176 56 178 58
-58 177 57 179 59
-59 178 58 180 60
-60 179 59 181 61
-61 180 60 182 62
-62 181 61 183 63
-63 182 62 184 64
-64 183 63 185 65
-65 66 184 64 186
-66 187 67 185 65
-67 66 188 68 186
-68 187 67 189 69
-69 188 68 190 70
-70 189 69 191 71
-71 190 70 192 72
-72 191 71 193 73
-73 192 72 194 74
-74 193 73 195 75
-75 194 74 196 76
-76 77 195 75 197
-77 198 78 196 76
-78 77 199 79 197
-79 198 78 200 80
-80 199 79 201 81
-81 200 80 202 82
-82 201 81 203 83
-83 202 82 204 84
-84 203 83 205 85
-85 204 84 206 86
-86 205 85 207 87
-87 88 206 86 208
-88 209 89 207 87
-89 88 210 90 208
-90 209 89 211 91
-91 210 90 212 92
-92 211 91 213 93
-93 212 92 214 94
-94 213 93 215 95
-95 214 94 216 96
-96 215 95 217 97
-97 216 96 218 98
-98 99 217 97 219
-99 220 100 218 98
-100 99 221 101 219
-101 220 100 222 102
-102 221 101 223 103
-103 222 102 224 104
-104 223 103 225 105
-105 224 104 226 106
-106 225 105 227 107
-107 226 106 228 108
-108 227 107 229 109
-109 110 228 108 230
-110 231 111 229 109
-111 110 232 112 230
-112 231 111 233 113
-113 232 112 234 114
-114 233 113 235 115
-115 234 114 236 116
-116 235 115 237 117
-117 236 116 238 118
-118 237 117 239 119
-119 238 118 240 120
-120 121 1 239 119
-121 122 2 240 120
-122 121 1 123 3
-123 122 2 124 4
-124 123 3 125 5
-125 124 4 126 6
-126 125 5 127 7
-127 126 6 128 8
-128 127 7 129 9
-129 128 8 130 10
-130 11 129 9 131
-131 132 12 130 10
-132 11 133 13 131
-133 132 12 134 14
-134 133 13 135 15
-135 134 14 136 16
-136 135 15 137 17
-137 136 16 138 18
-138 137 17 139 19
-139 138 18 140 20
-140 139 19 141 21
-141 22 140 20 142
-142 143 23 141 21
-143 22 144 24 142
-144 143 23 145 25
-145 144 24 146 26
-146 145 25 147 27
-147 146 26 148 28
-148 147 27 149 29
-149 148 28 150 30
-150 149 29 151 31
-151 150 30 152 32
-152 33 151 31 153
-153 154 34 152 32
-154 33 155 35 153
-155 154 34 156 36
-156 155 35 157 37
-157 156 36 158 38
-158 157 37 159 39
-159 158 38 160 40
-160 159 39 161 41
-161 160 40 162 42
-162 161 41 163 43
-163 44 162 42 164
-164 165 45 163 43
-165 44 166 46 164
-166 165 45 167 47
-167 166 46 168 48
-168 167 47 169 49
-169 168 48 170 50
-170 169 49 171 51
-171 170 50 172 52
-172 171 51 173 53
-173 172 52 174 54
-174 55 173 53 175
-175 176 56 174 54
-176 55 177 57 175
-177 176 56 178 58
-178 177 57 179 59
-179 178 58 180 60
-180 179 59 181 61
-181 180 60 182 62
-182 181 61 183 63
-183 182 62 184 64
-184 183 63 185 65
-185 66 184 64 186
-186 187 67 185 65
-187 66 188 68 186
-188 187 67 189 69
-189 188 68 190 70
-190 189 69 191 71
-191 190 70 192 72
-192 191 71 193 73
-193 192 72 194 74
-194 193 73 195 75
-195 194 74 196 76
-196 77 195 75 197
-197 198 78 196 76
-198 77 199 79 197
-199 198 78 200 80
-200 199 79 201 81
-201 200 80 202 82
-202 201 81 203 83
-203 202 82 204 84
-204 203 83 205 85
-205 204 84 206 86
-206 205 85 207 87
-207 88 206 86 208
-208 209 89 207 87
-209 88 210 90 208
-210 209 89 211 91
-211 210 90 212 92
-212 211 91 213 93
-213 212 92 214 94
-214 213 93 215 95
-215 214 94 216 96
-216 215 95 217 97
-217 216 96 218 98
-218 99 217 97 219
-219 220 100 218 98
-220 99 221 101 219
-221 220 100 222 102
-222 221 101 223 103
-223 222 102 224 104
-224 223 103 225 105
-225 224 104 226 106
-226 225 105 227 107
-227 226 106 228 108
-228 227 107 229 109
-229 110 228 108 230
-230 231 111 229 109
-231 110 232 112 230
-232 231 111 233 113
-233 232 112 234 114
-234 233 113 235 115
-235 234 114 236 116
-236 235 115 237 117
-237 236 116 238 118
-238 237 117 239 119
-239 238 118 240 120
-240 121 1 239 119
0

**************