C4graphGraph forms for C4 [ 240, 3 ] = C_240(1,41)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 3 ] = C_240(1,41).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {1, 2}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {2, 43}, {198, 239}, {196, 237}, {194, 235}, {192, 233}, {82, 123}, {80, 121}, {70, 111}, {68, 109}, {66, 107}, {64, 105}, {4, 45}, {6, 47}, {16, 57}, {18, 59}, {20, 61}, {22, 63}, {84, 125}, {86, 127}, {128, 169}, {130, 171}, {132, 173}, {134, 175}, {144, 185}, {146, 187}, {148, 189}, {150, 191}, {1, 42}, {197, 238}, {193, 234}, {81, 122}, {69, 110}, {65, 106}, {5, 46}, {17, 58}, {21, 62}, {85, 126}, {129, 170}, {133, 174}, {145, 186}, {149, 190}, {3, 44}, {195, 236}, {83, 124}, {67, 108}, {19, 60}, {131, 172}, {147, 188}, {7, 48}, {199, 240}, {79, 120}, {71, 112}, {15, 56}, {135, 176}, {143, 184}, {8, 49}, {78, 119}, {76, 117}, {74, 115}, {72, 113}, {10, 51}, {12, 53}, {14, 55}, {136, 177}, {138, 179}, {140, 181}, {142, 183}, {9, 50}, {77, 118}, {73, 114}, {13, 54}, {137, 178}, {141, 182}, {11, 52}, {223, 224}, {159, 160}, {75, 116}, {31, 32}, {95, 96}, {139, 180}, {23, 64}, {191, 232}, {183, 224}, {159, 200}, {63, 104}, {55, 96}, {31, 72}, {151, 192}, {24, 65}, {190, 231}, {188, 229}, {186, 227}, {184, 225}, {158, 199}, {156, 197}, {154, 195}, {62, 103}, {60, 101}, {58, 99}, {56, 97}, {26, 67}, {28, 69}, {30, 71}, {152, 193}, {25, 66}, {189, 230}, {185, 226}, {157, 198}, {153, 194}, {61, 102}, {57, 98}, {29, 70}, {27, 68}, {187, 228}, {155, 196}, {59, 100}, {32, 73}, {182, 223}, {180, 221}, {178, 219}, {176, 217}, {166, 207}, {164, 205}, {162, 203}, {160, 201}, {54, 95}, {52, 93}, {50, 91}, {48, 89}, {34, 75}, {36, 77}, {38, 79}, {33, 74}, {181, 222}, {177, 218}, {165, 206}, {161, 202}, {53, 94}, {49, 90}, {37, 78}, {35, 76}, {179, 220}, {163, 204}, {51, 92}, {39, 80}, {175, 216}, {167, 208}, {47, 88}, {40, 81}, {174, 215}, {172, 213}, {170, 211}, {168, 209}, {46, 87}, {42, 83}, {44, 85}, {41, 82}, {173, 214}, {169, 210}, {45, 86}, {43, 84}, {191, 192}, {171, 212}, {63, 64}, {8, 207}, {16, 215}, {24, 223}, {32, 231}, {40, 239}, {1, 200}, {3, 202}, {5, 204}, {7, 206}, {17, 216}, {19, 218}, {21, 220}, {23, 222}, {33, 232}, {35, 234}, {37, 236}, {39, 238}, {2, 201}, {6, 205}, {18, 217}, {22, 221}, {34, 233}, {38, 237}, {4, 203}, {20, 219}, {36, 235}, {87, 128}, {95, 136}, {119, 160}, {127, 168}, {9, 208}, {11, 210}, {13, 212}, {15, 214}, {41, 240}, {88, 129}, {90, 131}, {92, 133}, {94, 135}, {120, 161}, {122, 163}, {124, 165}, {126, 167}, {10, 209}, {14, 213}, {89, 130}, {93, 134}, {121, 162}, {125, 166}, {12, 211}, {91, 132}, {123, 164}, {96, 137}, {98, 139}, {100, 141}, {102, 143}, {112, 153}, {114, 155}, {116, 157}, {118, 159}, {97, 138}, {101, 142}, {113, 154}, {117, 158}, {99, 140}, {115, 156}, {1, 240}, {103, 144}, {111, 152}, {25, 224}, {27, 226}, {29, 228}, {31, 230}, {104, 145}, {106, 147}, {108, 149}, {110, 151}, {26, 225}, {30, 229}, {105, 146}, {109, 150}, {28, 227}, {107, 148}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
b: (2, 42)(3, 83)(4, 124)(5, 165)(6, 206)(8, 48)(9, 89)(10, 130)(11, 171)(12, 212)(14, 54)(15, 95)(16, 136)(17, 177)(18, 218)(20, 60)(21, 101)(22, 142)(23, 183)(24, 224)(26, 66)(27, 107)(28, 148)(29, 189)(30, 230)(32, 72)(33, 113)(34, 154)(35, 195)(36, 236)(38, 78)(39, 119)(40, 160)(41, 201)(44, 84)(45, 125)(46, 166)(47, 207)(50, 90)(51, 131)(52, 172)(53, 213)(56, 96)(57, 137)(58, 178)(59, 219)(62, 102)(63, 143)(64, 184)(65, 225)(68, 108)(69, 149)(70, 190)(71, 231)(74, 114)(75, 155)(76, 196)(77, 237)(80, 120)(81, 161)(82, 202)(86, 126)(87, 167)(88, 208)(92, 132)(93, 173)(94, 214)(98, 138)(99, 179)(100, 220)(104, 144)(105, 185)(106, 226)(110, 150)(111, 191)(112, 232)(116, 156)(117, 197)(118, 238)(122, 162)(123, 203)(128, 168)(129, 209)(134, 174)(135, 215)(140, 180)(141, 221)(146, 186)(147, 227)(152, 192)(153, 233)(158, 198)(159, 239)(164, 204)(170, 210)(176, 216)(182, 222)(188, 228)(194, 234)(200, 240)
c: (2, 200)(3, 159)(4, 118)(5, 77)(6, 36)(7, 235)(8, 194)(9, 153)(10, 112)(11, 71)(12, 30)(13, 229)(14, 188)(15, 147)(16, 106)(17, 65)(18, 24)(19, 223)(20, 182)(21, 141)(22, 100)(23, 59)(25, 217)(26, 176)(27, 135)(28, 94)(29, 53)(31, 211)(32, 170)(33, 129)(34, 88)(35, 47)(37, 205)(38, 164)(39, 123)(40, 82)(42, 240)(43, 199)(44, 158)(45, 117)(46, 76)(48, 234)(49, 193)(50, 152)(51, 111)(52, 70)(54, 228)(55, 187)(56, 146)(57, 105)(58, 64)(60, 222)(61, 181)(62, 140)(63, 99)(66, 216)(67, 175)(68, 134)(69, 93)(72, 210)(73, 169)(74, 128)(75, 87)(78, 204)(79, 163)(80, 122)(83, 239)(84, 198)(85, 157)(86, 116)(89, 233)(90, 192)(91, 151)(92, 110)(95, 227)(96, 186)(97, 145)(98, 104)(101, 221)(102, 180)(103, 139)(107, 215)(108, 174)(109, 133)(113, 209)(114, 168)(115, 127)(119, 203)(120, 162)(124, 238)(125, 197)(126, 156)(130, 232)(131, 191)(132, 150)(136, 226)(137, 185)(138, 144)(142, 220)(143, 179)(148, 214)(149, 173)(154, 208)(155, 167)(160, 202)(165, 237)(166, 196)(171, 231)(172, 190)(177, 225)(178, 184)(183, 219)(189, 213)(195, 207)(206, 236)(212, 230)(218, 224)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 3 ]
240
-1 2 200 42 240
-2 1 3 201 43
-3 44 2 4 202
-4 45 3 5 203
-5 46 4 6 204
-6 47 5 7 205
-7 48 6 8 206
-8 49 7 9 207
-9 50 8 10 208
-10 11 209 51 9
-11 12 210 52 10
-12 11 13 211 53
-13 12 14 212 54
-14 55 13 15 213
-15 56 14 16 214
-16 57 15 17 215
-17 58 16 18 216
-18 59 17 19 217
-19 60 18 20 218
-20 61 19 21 219
-21 22 220 62 20
-22 23 221 63 21
-23 22 24 222 64
-24 23 25 223 65
-25 66 24 26 224
-26 67 25 27 225
-27 68 26 28 226
-28 69 27 29 227
-29 70 28 30 228
-30 71 29 31 229
-31 72 30 32 230
-32 33 231 73 31
-33 34 232 74 32
-34 33 35 233 75
-35 34 36 234 76
-36 77 35 37 235
-37 78 36 38 236
-38 79 37 39 237
-39 80 38 40 238
-40 81 39 41 239
-41 82 40 42 240
-42 1 83 41 43
-43 44 2 84 42
-44 45 3 85 43
-45 44 46 4 86
-46 45 47 5 87
-47 88 46 48 6
-48 89 47 49 7
-49 90 48 50 8
-50 91 49 51 9
-51 92 50 52 10
-52 11 93 51 53
-53 12 94 52 54
-54 55 13 95 53
-55 56 14 96 54
-56 55 57 15 97
-57 56 58 16 98
-58 99 57 59 17
-59 100 58 60 18
-60 101 59 61 19
-61 102 60 62 20
-62 103 61 63 21
-63 22 104 62 64
-64 23 105 63 65
-65 66 24 106 64
-66 67 25 107 65
-67 66 68 26 108
-68 67 69 27 109
-69 110 68 70 28
-70 111 69 71 29
-71 112 70 72 30
-72 113 71 73 31
-73 114 72 74 32
-74 33 115 73 75
-75 34 116 74 76
-76 77 35 117 75
-77 78 36 118 76
-78 77 79 37 119
-79 78 80 38 120
-80 121 79 81 39
-81 122 80 82 40
-82 123 81 83 41
-83 124 82 84 42
-84 125 83 85 43
-85 44 126 84 86
-86 45 127 85 87
-87 88 46 128 86
-88 89 47 129 87
-89 88 90 48 130
-90 89 91 49 131
-91 132 90 92 50
-92 133 91 93 51
-93 134 92 94 52
-94 135 93 95 53
-95 136 94 96 54
-96 55 137 95 97
-97 56 138 96 98
-98 99 57 139 97
-99 100 58 140 98
-100 99 101 59 141
-101 100 102 60 142
-102 143 101 103 61
-103 144 102 104 62
-104 145 103 105 63
-105 146 104 106 64
-106 147 105 107 65
-107 66 148 106 108
-108 67 149 107 109
-109 110 68 150 108
-110 111 69 151 109
-111 110 112 70 152
-112 111 113 71 153
-113 154 112 114 72
-114 155 113 115 73
-115 156 114 116 74
-116 157 115 117 75
-117 158 116 118 76
-118 77 159 117 119
-119 78 160 118 120
-120 121 79 161 119
-121 122 80 162 120
-122 121 123 81 163
-123 122 124 82 164
-124 165 123 125 83
-125 166 124 126 84
-126 167 125 127 85
-127 168 126 128 86
-128 169 127 129 87
-129 88 170 128 130
-130 89 171 129 131
-131 132 90 172 130
-132 133 91 173 131
-133 132 134 92 174
-134 133 135 93 175
-135 176 134 136 94
-136 177 135 137 95
-137 178 136 138 96
-138 179 137 139 97
-139 180 138 140 98
-140 99 181 139 141
-141 100 182 140 142
-142 143 101 183 141
-143 144 102 184 142
-144 143 145 103 185
-145 144 146 104 186
-146 187 145 147 105
-147 188 146 148 106
-148 189 147 149 107
-149 190 148 150 108
-150 191 149 151 109
-151 110 192 150 152
-152 111 193 151 153
-153 154 112 194 152
-154 155 113 195 153
-155 154 156 114 196
-156 155 157 115 197
-157 198 156 158 116
-158 199 157 159 117
-159 200 158 160 118
-160 201 159 161 119
-161 202 160 162 120
-162 121 203 161 163
-163 122 204 162 164
-164 165 123 205 163
-165 166 124 206 164
-166 165 167 125 207
-167 166 168 126 208
-168 209 167 169 127
-169 210 168 170 128
-170 211 169 171 129
-171 212 170 172 130
-172 213 171 173 131
-173 132 214 172 174
-174 133 215 173 175
-175 176 134 216 174
-176 177 135 217 175
-177 176 178 136 218
-178 177 179 137 219
-179 220 178 180 138
-180 221 179 181 139
-181 222 180 182 140
-182 223 181 183 141
-183 224 182 184 142
-184 143 225 183 185
-185 144 226 184 186
-186 187 145 227 185
-187 188 146 228 186
-188 187 189 147 229
-189 188 190 148 230
-190 231 189 191 149
-191 232 190 192 150
-192 233 191 193 151
-193 234 192 194 152
-194 235 193 195 153
-195 154 236 194 196
-196 155 237 195 197
-197 198 156 238 196
-198 199 157 239 197
-199 198 200 158 240
-200 1 199 201 159
-201 2 200 202 160
-202 3 201 203 161
-203 4 202 204 162
-204 5 203 205 163
-205 6 204 206 164
-206 165 7 205 207
-207 166 8 206 208
-208 209 167 9 207
-209 210 168 10 208
-210 11 209 211 169
-211 12 210 212 170
-212 13 211 213 171
-213 14 212 214 172
-214 15 213 215 173
-215 16 214 216 174
-216 17 215 217 175
-217 176 18 216 218
-218 177 19 217 219
-219 220 178 20 218
-220 221 179 21 219
-221 22 220 222 180
-222 23 221 223 181
-223 24 222 224 182
-224 25 223 225 183
-225 26 224 226 184
-226 27 225 227 185
-227 28 226 228 186
-228 187 29 227 229
-229 188 30 228 230
-230 231 189 31 229
-231 232 190 32 230
-232 33 231 233 191
-233 34 232 234 192
-234 35 233 235 193
-235 36 234 236 194
-236 37 235 237 195
-237 38 236 238 196
-238 39 237 239 197
-239 198 40 238 240
-240 1 199 41 239
0

**************