[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 8 ] =
{4,4}_[12,10].
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {2, 3}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230,
231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219},
{216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204,
205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193},
{190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178,
179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167},
{164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152,
153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141},
{138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126,
127}, {124, 125}, {122, 123}, {118, 119}, {116, 117}, {114, 115}, {68, 69}, {66,
67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50,
51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27},
{28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71},
{72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87},
{88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102,
103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {1, 2}, {237,
238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214},
{209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185,
186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162},
{157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133,
134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {65, 66}, {61,
62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {69, 70}, {73,
74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102},
{105, 106}, {109, 110}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212},
{203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155,
156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {67, 68}, {59,
60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83,
84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {231, 232}, {215, 216}, {199,
200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23,
24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {239, 240}, {207, 208},
{175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224},
{159, 160}, {95, 96}, {24, 122}, {25, 123}, {28, 126}, {29, 127}, {26, 124},
{27, 125}, {23, 121}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {5, 125}, {6,
126}, {7, 127}, {1, 120}, {63, 64}, {191, 192}, {8, 128}, {120, 240}, {63, 183},
{62, 182}, {61, 181}, {60, 180}, {59, 179}, {58, 178}, {57, 177}, {56, 176},
{47, 167}, {46, 166}, {45, 165}, {44, 164}, {43, 163}, {42, 162}, {41, 161}, {9,
129}, {10, 130}, {11, 131}, {12, 132}, {13, 133}, {14, 134}, {15, 135}, {24,
144}, {25, 145}, {26, 146}, {27, 147}, {28, 148}, {29, 149}, {30, 150}, {31,
151}, {40, 160}, {72, 192}, {73, 193}, {74, 194}, {75, 195}, {76, 196}, {77,
197}, {78, 198}, {79, 199}, {88, 208}, {89, 209}, {90, 210}, {91, 211}, {92,
212}, {93, 213}, {94, 214}, {95, 215}, {104, 224}, {105, 225}, {106, 226}, {107,
227}, {108, 228}, {109, 229}, {110, 230}, {111, 231}, {121, 240}, {16, 136},
{119, 239}, {118, 238}, {117, 237}, {116, 236}, {115, 235}, {114, 234}, {113,
233}, {55, 175}, {54, 174}, {53, 173}, {52, 172}, {51, 171}, {50, 170}, {49,
169}, {48, 168}, {17, 137}, {18, 138}, {19, 139}, {20, 140}, {21, 141}, {22,
142}, {23, 143}, {80, 200}, {81, 201}, {82, 202}, {83, 203}, {84, 204}, {85,
205}, {86, 206}, {87, 207}, {112, 232}, {30, 128}, {63, 161}, {62, 160}, {31,
129}, {94, 192}, {95, 193}, {32, 130}, {120, 218}, {117, 215}, {116, 214}, {113,
211}, {61, 159}, {60, 158}, {57, 155}, {56, 154}, {53, 151}, {52, 150}, {49,
147}, {48, 146}, {45, 143}, {44, 142}, {33, 131}, {36, 134}, {37, 135}, {40,
138}, {41, 139}, {96, 194}, {97, 195}, {100, 198}, {101, 199}, {104, 202}, {105,
203}, {108, 206}, {109, 207}, {112, 210}, {34, 132}, {115, 213}, {114, 212},
{59, 157}, {58, 156}, {51, 149}, {50, 148}, {43, 141}, {42, 140}, {35, 133},
{98, 196}, {99, 197}, {106, 204}, {107, 205}, {38, 136}, {119, 217}, {118, 216},
{55, 153}, {54, 152}, {39, 137}, {102, 200}, {103, 201}, {32, 152}, {33, 153},
{34, 154}, {35, 155}, {36, 156}, {37, 157}, {38, 158}, {39, 159}, {96, 216},
{97, 217}, {98, 218}, {99, 219}, {100, 220}, {101, 221}, {102, 222}, {103, 223},
{46, 144}, {47, 145}, {110, 208}, {111, 209}, {1, 219}, {4, 222}, {5, 223}, {2,
220}, {3, 221}, {64, 162}, {68, 166}, {65, 163}, {69, 167}, {72, 170}, {73,
171}, {76, 174}, {77, 175}, {80, 178}, {81, 179}, {84, 182}, {85, 183}, {88,
186}, {89, 187}, {92, 190}, {93, 191}, {6, 224}, {67, 165}, {66, 164}, {7, 225},
{14, 232}, {15, 233}, {22, 240}, {74, 172}, {75, 173}, {82, 180}, {83, 181},
{90, 188}, {91, 189}, {8, 226}, {9, 227}, {12, 230}, {13, 231}, {10, 228}, {11,
229}, {70, 168}, {71, 169}, {86, 184}, {87, 185}, {64, 184}, {67, 187}, {66,
186}, {65, 185}, {68, 188}, {69, 189}, {70, 190}, {71, 191}, {16, 234}, {17,
235}, {20, 238}, {21, 239}, {18, 236}, {19, 237}, {78, 176}, {79, 177}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 219)(3, 99)(4, 197)(5, 77)(6, 175)(7, 55)(8, 153)(9, 33)(10, 131)(12,
229)(13, 109)(14, 207)(15, 87)(16, 185)(17, 65)(18, 163)(19, 43)(20, 141)(22,
239)(23, 119)(24, 217)(25, 97)(26, 195)(27, 75)(28, 173)(29, 53)(30, 151)(32,
129)(34, 227)(35, 107)(36, 205)(37, 85)(38, 183)(39, 63)(40, 161)(42, 139)(44,
237)(45, 117)(46, 215)(47, 95)(48, 193)(49, 73)(50, 171)(52, 149)(54, 127)(56,
225)(57, 105)(58, 203)(59, 83)(60, 181)(62, 159)(64, 137)(66, 235)(67, 115)(68,
213)(69, 93)(70, 191)(72, 169)(74, 147)(76, 125)(78, 223)(79, 103)(80, 201)(82,
179)(84, 157)(86, 135)(88, 233)(89, 113)(90, 211)(92, 189)(94, 167)(96, 145)(98,
123)(100, 221)(102, 199)(104, 177)(106, 155)(108, 133)(110, 231)(112, 209)(114,
187)(116, 165)(118, 143)(120, 121)(122, 218)(124, 196)(126, 174)(128, 152)(132,
228)(134, 206)(136, 184)(138, 162)(142, 238)(144, 216)(146, 194)(148, 172)(154,
226)(156, 204)(158, 182)(164, 236)(166, 214)(168, 192)(176, 224)(178, 202)(186,
234)(188, 212)(198, 222)(208, 232) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 120)(3, 119)(4, 118)(5, 117)(6, 116)(7, 115)(8, 114)(9, 113)(10, 112)(11,
111)(12, 110)(13, 109)(14, 108)(15, 107)(16, 106)(17, 105)(18, 104)(19, 103)(20,
102)(21, 101)(22, 100)(23, 99)(24, 98)(25, 97)(26, 96)(27, 95)(28, 94)(29,
93)(30, 92)(31, 91)(32, 90)(33, 89)(34, 88)(35, 87)(36, 86)(37, 85)(38, 84)(39,
83)(40, 82)(41, 81)(42, 80)(43, 79)(44, 78)(45, 77)(46, 76)(47, 75)(48, 74)(49,
73)(50, 72)(51, 71)(52, 70)(53, 69)(54, 68)(55, 67)(56, 66)(57, 65)(58, 64)(59,
63)(60, 62)(121, 219)(122, 218)(123, 217)(124, 216)(125, 215)(126, 214)(127,
213)(128, 212)(129, 211)(130, 210)(131, 209)(132, 208)(133, 207)(134, 206)(135,
205)(136, 204)(137, 203)(138, 202)(139, 201)(140, 200)(141, 199)(142, 198)(143,
197)(144, 196)(145, 195)(146, 194)(147, 193)(148, 192)(149, 191)(150, 190)(151,
189)(152, 188)(153, 187)(154, 186)(155, 185)(156, 184)(157, 183)(158, 182)(159,
181)(160, 180)(161, 179)(162, 178)(163, 177)(164, 176)(165, 175)(166, 174)(167,
173)(168, 172)(169, 171)(220, 240)(221, 239)(222, 238)(223, 237)(224, 236)(225,
235)(226, 234)(227, 233)(228, 232)(229, 231)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
C4[ 240, 8 ]
240
-1 121 2 120 219
-2 220 1 122 3
-3 221 2 123 4
-4 222 3 124 5
-5 223 4 125 6
-6 224 5 126 7
-7 225 6 127 8
-8 226 7 128 9
-9 227 8 129 10
-10 11 228 9 130
-11 12 229 10 131
-12 11 132 13 230
-13 231 12 133 14
-14 232 13 134 15
-15 233 14 135 16
-16 234 15 136 17
-17 235 16 137 18
-18 236 17 138 19
-19 237 18 139 20
-20 238 19 140 21
-21 22 239 20 141
-22 23 240 21 142
-23 22 121 143 24
-24 23 122 144 25
-25 24 123 145 26
-26 25 124 146 27
-27 26 125 147 28
-28 27 126 148 29
-29 28 127 149 30
-30 29 128 150 31
-31 30 129 151 32
-32 33 31 130 152
-33 34 32 131 153
-34 33 132 154 35
-35 34 133 155 36
-36 35 134 156 37
-37 36 135 157 38
-38 37 136 158 39
-39 38 137 159 40
-40 39 138 160 41
-41 40 139 161 42
-42 41 140 162 43
-43 44 42 141 163
-44 45 43 142 164
-45 44 143 165 46
-46 45 144 166 47
-47 46 145 167 48
-48 47 146 168 49
-49 48 147 169 50
-50 49 148 170 51
-51 50 149 171 52
-52 51 150 172 53
-53 52 151 173 54
-54 55 53 152 174
-55 56 54 153 175
-56 55 154 176 57
-57 56 155 177 58
-58 57 156 178 59
-59 58 157 179 60
-60 59 158 180 61
-61 60 159 181 62
-62 61 160 182 63
-63 62 161 183 64
-64 63 162 184 65
-65 66 64 163 185
-66 67 65 164 186
-67 66 165 187 68
-68 67 166 188 69
-69 68 167 189 70
-70 69 168 190 71
-71 70 169 191 72
-72 71 170 192 73
-73 72 171 193 74
-74 73 172 194 75
-75 74 173 195 76
-76 77 75 174 196
-77 78 76 175 197
-78 77 176 198 79
-79 78 177 199 80
-80 79 178 200 81
-81 80 179 201 82
-82 81 180 202 83
-83 82 181 203 84
-84 83 182 204 85
-85 84 183 205 86
-86 85 184 206 87
-87 88 86 185 207
-88 89 87 186 208
-89 88 187 209 90
-90 89 188 210 91
-91 90 189 211 92
-92 91 190 212 93
-93 92 191 213 94
-94 93 192 214 95
-95 94 193 215 96
-96 95 194 216 97
-97 96 195 217 98
-98 99 97 196 218
-99 100 98 197 219
-100 99 198 220 101
-101 100 199 221 102
-102 101 200 222 103
-103 102 201 223 104
-104 103 202 224 105
-105 104 203 225 106
-106 105 204 226 107
-107 106 205 227 108
-108 107 206 228 109
-109 110 108 207 229
-110 111 109 208 230
-111 110 209 231 112
-112 111 210 232 113
-113 112 211 233 114
-114 113 212 234 115
-115 114 213 235 116
-116 115 214 236 117
-117 116 215 237 118
-118 117 216 238 119
-119 118 217 239 120
-120 1 119 218 240
-121 1 23 122 240
-122 121 2 24 123
-123 122 3 25 124
-124 123 4 26 125
-125 124 5 27 126
-126 125 6 28 127
-127 126 7 29 128
-128 127 8 30 129
-129 128 9 31 130
-130 129 10 32 131
-131 11 33 132 130
-132 12 34 133 131
-133 132 13 35 134
-134 133 14 36 135
-135 134 15 37 136
-136 135 16 38 137
-137 136 17 39 138
-138 137 18 40 139
-139 138 19 41 140
-140 139 20 42 141
-141 140 21 43 142
-142 22 44 143 141
-143 23 45 144 142
-144 143 24 46 145
-145 144 25 47 146
-146 145 26 48 147
-147 146 27 49 148
-148 147 28 50 149
-149 148 29 51 150
-150 149 30 52 151
-151 150 31 53 152
-152 151 32 54 153
-153 33 55 154 152
-154 34 56 155 153
-155 154 35 57 156
-156 155 36 58 157
-157 156 37 59 158
-158 157 38 60 159
-159 158 39 61 160
-160 159 40 62 161
-161 160 41 63 162
-162 161 42 64 163
-163 162 43 65 164
-164 44 66 165 163
-165 45 67 166 164
-166 165 46 68 167
-167 166 47 69 168
-168 167 48 70 169
-169 168 49 71 170
-170 169 50 72 171
-171 170 51 73 172
-172 171 52 74 173
-173 172 53 75 174
-174 173 54 76 175
-175 55 77 176 174
-176 56 78 177 175
-177 176 57 79 178
-178 177 58 80 179
-179 178 59 81 180
-180 179 60 82 181
-181 180 61 83 182
-182 181 62 84 183
-183 182 63 85 184
-184 183 64 86 185
-185 184 65 87 186
-186 66 88 187 185
-187 67 89 188 186
-188 187 68 90 189
-189 188 69 91 190
-190 189 70 92 191
-191 190 71 93 192
-192 191 72 94 193
-193 192 73 95 194
-194 193 74 96 195
-195 194 75 97 196
-196 195 76 98 197
-197 77 99 198 196
-198 78 100 199 197
-199 198 79 101 200
-200 199 80 102 201
-201 200 81 103 202
-202 201 82 104 203
-203 202 83 105 204
-204 203 84 106 205
-205 204 85 107 206
-206 205 86 108 207
-207 206 87 109 208
-208 88 110 209 207
-209 89 111 210 208
-210 209 90 112 211
-211 210 91 113 212
-212 211 92 114 213
-213 212 93 115 214
-214 213 94 116 215
-215 214 95 117 216
-216 215 96 118 217
-217 216 97 119 218
-218 217 98 120 219
-219 99 220 1 218
-220 100 221 2 219
-221 220 101 222 3
-222 221 102 223 4
-223 222 103 224 5
-224 223 104 225 6
-225 224 105 226 7
-226 225 106 227 8
-227 226 107 228 9
-228 227 108 229 10
-229 11 228 109 230
-230 110 231 12 229
-231 111 232 13 230
-232 231 112 233 14
-233 232 113 234 15
-234 233 114 235 16
-235 234 115 236 17
-236 235 116 237 18
-237 236 117 238 19
-238 237 118 239 20
-239 238 119 240 21
-240 22 121 239 120
0