[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 9 ] =
{4,4}_<16,4>.
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {2, 3}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230,
231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219},
{216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204,
205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193},
{190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {178, 179}, {176,
177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165},
{162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150,
151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139},
{68, 69}, {66, 67}, {64, 65}, {62, 63}, {58, 59}, {56, 57}, {54, 55}, {52, 53},
{50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24,
25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {70,
71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86,
87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101},
{102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114,
115}, {116, 117}, {118, 119}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {132, 133}, {134, 135}, {136, 137}, {1, 2}, {237, 238}, {233, 234},
{229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205,
206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182},
{177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153,
154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {65, 66}, {61, 62}, {57,
58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77,
78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106},
{109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133,
134}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195,
196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{139, 140}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116},
{123, 124}, {131, 132}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184},
{167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103,
104}, {119, 120}, {135, 136}, {15, 16}, {239, 240}, {207, 208}, {175, 176},
{143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 61}, {67, 127}, {66, 126}, {65,
125}, {64, 124}, {2, 62}, {3, 63}, {128, 188}, {129, 189}, {130, 190}, {131,
191}, {1, 60}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {4, 64}, {180, 240},
{175, 235}, {174, 234}, {173, 233}, {172, 232}, {167, 227}, {166, 226}, {165,
225}, {164, 224}, {159, 219}, {158, 218}, {157, 217}, {156, 216}, {151, 211},
{150, 210}, {149, 209}, {148, 208}, {143, 203}, {142, 202}, {141, 201}, {140,
200}, {63, 123}, {62, 122}, {61, 121}, {60, 120}, {55, 115}, {54, 114}, {53,
113}, {52, 112}, {47, 107}, {46, 106}, {45, 105}, {44, 104}, {39, 99}, {5, 65},
{6, 66}, {7, 67}, {12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21, 81},
{22, 82}, {23, 83}, {28, 88}, {29, 89}, {30, 90}, {31, 91}, {36, 96}, {37, 97},
{38, 98}, {132, 192}, {133, 193}, {134, 194}, {135, 195}, {61, 120}, {181, 240},
{8, 68}, {171, 231}, {170, 230}, {169, 229}, {168, 228}, {155, 215}, {154, 214},
{153, 213}, {152, 212}, {139, 199}, {138, 198}, {137, 197}, {59, 119}, {58,
118}, {57, 117}, {56, 116}, {43, 103}, {42, 102}, {41, 101}, {40, 100}, {9, 69},
{10, 70}, {11, 71}, {24, 84}, {25, 85}, {26, 86}, {27, 87}, {136, 196}, {16,
76}, {179, 239}, {178, 238}, {177, 237}, {176, 236}, {147, 207}, {146, 206},
{145, 205}, {144, 204}, {51, 111}, {50, 110}, {49, 109}, {48, 108}, {17, 77},
{18, 78}, {19, 79}, {32, 92}, {163, 223}, {162, 222}, {161, 221}, {160, 220},
{33, 93}, {34, 94}, {35, 95}, {63, 64}, {191, 192}, {17, 181}, {18, 182}, {19,
183}, {24, 188}, {25, 189}, {26, 190}, {27, 191}, {20, 184}, {21, 185}, {22,
186}, {23, 187}, {68, 128}, {69, 129}, {70, 130}, {71, 131}, {76, 136}, {77,
137}, {78, 138}, {79, 139}, {84, 144}, {85, 145}, {86, 146}, {87, 147}, {92,
152}, {93, 153}, {94, 154}, {95, 155}, {100, 160}, {101, 161}, {102, 162}, {103,
163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {116, 176}, {117, 177},
{118, 178}, {119, 179}, {124, 184}, {125, 185}, {126, 186}, {127, 187}, {72,
132}, {73, 133}, {74, 134}, {75, 135}, {88, 148}, {89, 149}, {90, 150}, {91,
151}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {120, 180}, {121, 181},
{122, 182}, {123, 183}, {121, 180}, {28, 192}, {60, 224}, {29, 193}, {30, 194},
{31, 195}, {80, 140}, {81, 141}, {82, 142}, {83, 143}, {112, 172}, {113, 173},
{114, 174}, {115, 175}, {1, 225}, {2, 226}, {3, 227}, {4, 228}, {5, 229}, {6,
230}, {7, 231}, {8, 232}, {9, 233}, {10, 234}, {11, 235}, {12, 236}, {13, 237},
{14, 238}, {15, 239}, {16, 240}, {32, 196}, {59, 223}, {58, 222}, {57, 221},
{56, 220}, {51, 215}, {50, 214}, {49, 213}, {48, 212}, {43, 207}, {42, 206},
{41, 205}, {40, 204}, {33, 197}, {34, 198}, {35, 199}, {36, 200}, {55, 219},
{54, 218}, {53, 217}, {52, 216}, {39, 203}, {37, 201}, {38, 202}, {44, 208},
{47, 211}, {46, 210}, {45, 209}, {96, 156}, {97, 157}, {98, 158}, {99, 159},
{127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 225)(3, 165)(4, 105)(5, 45)(6, 209)(7, 149)(8, 89)(9, 29)(10, 193)(11,
133)(12, 73)(14, 237)(15, 177)(16, 117)(17, 57)(18, 221)(19, 161)(20, 101)(21,
41)(22, 205)(23, 145)(24, 85)(26, 189)(27, 129)(28, 69)(30, 233)(31, 173)(32,
113)(33, 53)(34, 217)(35, 157)(36, 97)(38, 201)(39, 141)(40, 81)(42, 185)(43,
125)(44, 65)(46, 229)(47, 169)(48, 109)(50, 213)(51, 153)(52, 93)(54, 197)(55,
137)(56, 77)(58, 181)(59, 121)(60, 61)(62, 224)(63, 164)(64, 104)(66, 208)(67,
148)(68, 88)(70, 192)(71, 132)(74, 236)(75, 176)(76, 116)(78, 220)(79, 160)(80,
100)(82, 204)(83, 144)(86, 188)(87, 128)(90, 232)(91, 172)(92, 112)(94, 216)(95,
156)(98, 200)(99, 140)(102, 184)(103, 124)(106, 228)(107, 168)(110, 212)(111,
152)(114, 196)(115, 136)(118, 240)(119, 180)(122, 223)(123, 163)(126, 207)(127,
147)(130, 191)(134, 235)(135, 175)(138, 219)(139, 159)(142, 203)(146, 187)(150,
231)(151, 171)(154, 215)(158, 199)(162, 183)(166, 227)(170, 211)(174, 195)(178,
239)(182, 222)(186, 206)(194, 234)(198, 218)(210, 230) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 61)(3, 121)(4, 181)(5, 17)(6, 77)(7, 137)(8, 197)(9, 33)(10, 93)(11,
153)(12, 213)(13, 49)(14, 109)(15, 169)(16, 229)(18, 65)(19, 125)(20, 185)(22,
81)(23, 141)(24, 201)(25, 37)(26, 97)(27, 157)(28, 217)(29, 53)(30, 113)(31,
173)(32, 233)(34, 69)(35, 129)(36, 189)(38, 85)(39, 145)(40, 205)(42, 101)(43,
161)(44, 221)(45, 57)(46, 117)(47, 177)(48, 237)(50, 73)(51, 133)(52, 193)(54,
89)(55, 149)(56, 209)(58, 105)(59, 165)(60, 225)(63, 122)(64, 182)(66, 78)(67,
138)(68, 198)(70, 94)(71, 154)(72, 214)(74, 110)(75, 170)(76, 230)(79, 126)(80,
186)(83, 142)(84, 202)(86, 98)(87, 158)(88, 218)(90, 114)(91, 174)(92, 234)(95,
130)(96, 190)(99, 146)(100, 206)(103, 162)(104, 222)(106, 118)(107, 178)(108,
238)(111, 134)(112, 194)(115, 150)(116, 210)(119, 166)(120, 226)(124, 183)(127,
139)(128, 199)(131, 155)(132, 215)(135, 171)(136, 231)(140, 187)(144, 203)(147,
159)(148, 219)(151, 175)(152, 235)(156, 191)(160, 207)(164, 223)(167, 179)(168,
239)(172, 195)(176, 211)(180, 227)(188, 200)(192, 216)(196, 232)(208, 220)(212,
236)(228, 240)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
C4[ 240, 9 ]
240
-1 2 60 225 61
-2 1 3 226 62
-3 2 4 227 63
-4 3 5 228 64
-5 4 6 229 65
-6 66 5 7 230
-7 231 67 6 8
-8 232 68 7 9
-9 233 69 8 10
-10 11 234 70 9
-11 12 235 71 10
-12 11 13 236 72
-13 12 14 237 73
-14 13 15 238 74
-15 14 16 239 75
-16 15 17 240 76
-17 77 16 181 18
-18 78 17 182 19
-19 79 18 183 20
-20 80 19 184 21
-21 22 81 20 185
-22 23 82 21 186
-23 22 187 24 83
-24 23 188 25 84
-25 24 189 26 85
-26 25 190 27 86
-27 26 191 28 87
-28 88 27 192 29
-29 89 28 193 30
-30 90 29 194 31
-31 91 30 195 32
-32 33 92 31 196
-33 34 93 32 197
-34 33 198 35 94
-35 34 199 36 95
-36 35 200 37 96
-37 36 201 38 97
-38 37 202 39 98
-39 99 38 203 40
-40 100 39 204 41
-41 101 40 205 42
-42 102 41 206 43
-43 44 103 42 207
-44 45 104 43 208
-45 44 209 46 105
-46 45 210 47 106
-47 46 211 48 107
-48 47 212 49 108
-49 48 213 50 109
-50 110 49 214 51
-51 111 50 215 52
-52 112 51 216 53
-53 113 52 217 54
-54 55 114 53 218
-55 56 115 54 219
-56 55 220 57 116
-57 56 221 58 117
-58 57 222 59 118
-59 58 223 60 119
-60 1 59 224 120
-61 121 1 62 120
-62 122 2 61 63
-63 123 3 62 64
-64 124 4 63 65
-65 66 125 5 64
-66 67 126 6 65
-67 66 68 127 7
-68 67 69 128 8
-69 68 70 129 9
-70 69 71 130 10
-71 11 70 72 131
-72 132 12 71 73
-73 133 13 72 74
-74 134 14 73 75
-75 135 15 74 76
-76 77 136 16 75
-77 78 137 17 76
-78 77 79 138 18
-79 78 80 139 19
-80 79 81 140 20
-81 80 82 141 21
-82 22 81 83 142
-83 143 23 82 84
-84 144 24 83 85
-85 145 25 84 86
-86 146 26 85 87
-87 88 147 27 86
-88 89 148 28 87
-89 88 90 149 29
-90 89 91 150 30
-91 90 92 151 31
-92 91 93 152 32
-93 33 92 94 153
-94 154 34 93 95
-95 155 35 94 96
-96 156 36 95 97
-97 157 37 96 98
-98 99 158 38 97
-99 100 159 39 98
-100 99 101 160 40
-101 100 102 161 41
-102 101 103 162 42
-103 102 104 163 43
-104 44 103 105 164
-105 165 45 104 106
-106 166 46 105 107
-107 167 47 106 108
-108 168 48 107 109
-109 110 169 49 108
-110 111 170 50 109
-111 110 112 171 51
-112 111 113 172 52
-113 112 114 173 53
-114 113 115 174 54
-115 55 114 116 175
-116 176 56 115 117
-117 177 57 116 118
-118 178 58 117 119
-119 179 59 118 120
-120 180 60 61 119
-121 122 180 181 61
-122 121 123 182 62
-123 122 124 183 63
-124 123 125 184 64
-125 124 126 185 65
-126 66 125 127 186
-127 187 67 126 128
-128 188 68 127 129
-129 189 69 128 130
-130 190 70 129 131
-131 132 191 71 130
-132 133 192 72 131
-133 132 134 193 73
-134 133 135 194 74
-135 134 136 195 75
-136 135 137 196 76
-137 77 136 138 197
-138 198 78 137 139
-139 199 79 138 140
-140 200 80 139 141
-141 201 81 140 142
-142 143 202 82 141
-143 144 203 83 142
-144 143 145 204 84
-145 144 146 205 85
-146 145 147 206 86
-147 146 148 207 87
-148 88 147 149 208
-149 209 89 148 150
-150 210 90 149 151
-151 211 91 150 152
-152 212 92 151 153
-153 154 213 93 152
-154 155 214 94 153
-155 154 156 215 95
-156 155 157 216 96
-157 156 158 217 97
-158 157 159 218 98
-159 99 158 160 219
-160 220 100 159 161
-161 221 101 160 162
-162 222 102 161 163
-163 223 103 162 164
-164 165 224 104 163
-165 166 225 105 164
-166 165 167 226 106
-167 166 168 227 107
-168 167 169 228 108
-169 168 170 229 109
-170 110 169 171 230
-171 231 111 170 172
-172 232 112 171 173
-173 233 113 172 174
-174 234 114 173 175
-175 176 235 115 174
-176 177 236 116 175
-177 176 178 237 117
-178 177 179 238 118
-179 178 180 239 119
-180 121 179 240 120
-181 121 17 182 240
-182 122 181 18 183
-183 123 182 19 184
-184 124 183 20 185
-185 125 184 21 186
-186 22 187 126 185
-187 23 188 127 186
-188 187 24 189 128
-189 188 25 190 129
-190 189 26 191 130
-191 190 27 192 131
-192 132 191 28 193
-193 133 192 29 194
-194 134 193 30 195
-195 135 194 31 196
-196 136 195 32 197
-197 33 198 137 196
-198 34 199 138 197
-199 198 35 200 139
-200 199 36 201 140
-201 200 37 202 141
-202 201 38 203 142
-203 143 202 39 204
-204 144 203 40 205
-205 145 204 41 206
-206 146 205 42 207
-207 147 206 43 208
-208 44 209 148 207
-209 45 210 149 208
-210 209 46 211 150
-211 210 47 212 151
-212 211 48 213 152
-213 212 49 214 153
-214 154 213 50 215
-215 155 214 51 216
-216 156 215 52 217
-217 157 216 53 218
-218 158 217 54 219
-219 55 220 159 218
-220 56 221 160 219
-221 220 57 222 161
-222 221 58 223 162
-223 222 59 224 163
-224 223 60 225 164
-225 165 1 224 226
-226 166 2 225 227
-227 167 3 226 228
-228 168 4 227 229
-229 169 5 228 230
-230 231 170 6 229
-231 232 171 7 230
-232 231 233 172 8
-233 232 234 173 9
-234 233 235 174 10
-235 11 234 236 175
-236 176 12 235 237
-237 177 13 236 238
-238 178 14 237 239
-239 179 15 238 240
-240 180 16 181 239
0