C4graphGraph forms for C4 [ 240, 11 ] = {4,4}_[30,4]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 11 ] = {4,4}_[30,4].

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {118, 119}, {116, 117}, {114, 115}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {1, 2}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {3, 4}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {231, 232}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {239, 240}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {64, 126}, {65, 127}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {59, 121}, {63, 125}, {62, 124}, {60, 122}, {61, 123}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {5, 125}, {6, 126}, {7, 127}, {1, 120}, {63, 64}, {191, 192}, {8, 128}, {120, 240}, {63, 183}, {62, 182}, {61, 181}, {60, 180}, {59, 179}, {58, 178}, {57, 177}, {56, 176}, {47, 167}, {46, 166}, {45, 165}, {44, 164}, {43, 163}, {42, 162}, {41, 161}, {9, 129}, {10, 130}, {11, 131}, {12, 132}, {13, 133}, {14, 134}, {15, 135}, {24, 144}, {25, 145}, {26, 146}, {27, 147}, {28, 148}, {29, 149}, {30, 150}, {31, 151}, {40, 160}, {72, 192}, {73, 193}, {74, 194}, {75, 195}, {76, 196}, {77, 197}, {78, 198}, {79, 199}, {88, 208}, {89, 209}, {90, 210}, {91, 211}, {92, 212}, {93, 213}, {94, 214}, {95, 215}, {104, 224}, {105, 225}, {106, 226}, {107, 227}, {108, 228}, {109, 229}, {110, 230}, {111, 231}, {121, 240}, {16, 136}, {119, 239}, {118, 238}, {117, 237}, {116, 236}, {115, 235}, {114, 234}, {113, 233}, {55, 175}, {54, 174}, {53, 173}, {52, 172}, {51, 171}, {50, 170}, {49, 169}, {48, 168}, {17, 137}, {18, 138}, {19, 139}, {20, 140}, {21, 141}, {22, 142}, {23, 143}, {80, 200}, {81, 201}, {82, 202}, {83, 203}, {84, 204}, {85, 205}, {86, 206}, {87, 207}, {112, 232}, {1, 183}, {8, 190}, {9, 191}, {32, 152}, {33, 153}, {34, 154}, {35, 155}, {36, 156}, {37, 157}, {38, 158}, {39, 159}, {96, 216}, {97, 217}, {98, 218}, {99, 219}, {100, 220}, {101, 221}, {102, 222}, {103, 223}, {2, 184}, {3, 185}, {6, 188}, {7, 189}, {4, 186}, {5, 187}, {66, 128}, {119, 181}, {118, 180}, {115, 177}, {114, 176}, {67, 129}, {70, 132}, {71, 133}, {74, 136}, {75, 137}, {78, 140}, {79, 141}, {82, 144}, {83, 145}, {86, 148}, {87, 149}, {90, 152}, {91, 153}, {94, 156}, {95, 157}, {98, 160}, {99, 161}, {102, 164}, {103, 165}, {106, 168}, {107, 169}, {110, 172}, {111, 173}, {68, 130}, {117, 179}, {116, 178}, {69, 131}, {76, 138}, {77, 139}, {84, 146}, {85, 147}, {92, 154}, {93, 155}, {100, 162}, {101, 163}, {108, 170}, {109, 171}, {10, 192}, {58, 240}, {47, 229}, {46, 228}, {43, 225}, {42, 224}, {11, 193}, {14, 196}, {15, 197}, {26, 208}, {27, 209}, {30, 212}, {31, 213}, {12, 194}, {120, 182}, {45, 227}, {44, 226}, {13, 195}, {28, 210}, {29, 211}, {72, 134}, {73, 135}, {88, 150}, {89, 151}, {104, 166}, {105, 167}, {16, 198}, {57, 239}, {56, 238}, {49, 231}, {48, 230}, {17, 199}, {24, 206}, {25, 207}, {18, 200}, {55, 237}, {54, 236}, {51, 233}, {50, 232}, {19, 201}, {22, 204}, {23, 205}, {20, 202}, {113, 175}, {53, 235}, {52, 234}, {21, 203}, {80, 142}, {81, 143}, {112, 174}, {32, 214}, {41, 223}, {40, 222}, {33, 215}, {64, 184}, {67, 187}, {66, 186}, {65, 185}, {68, 188}, {69, 189}, {70, 190}, {71, 191}, {34, 216}, {35, 217}, {38, 220}, {39, 221}, {36, 218}, {37, 219}, {96, 158}, {97, 159}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 120)(3, 119)(4, 118)(5, 117)(6, 116)(7, 115)(8, 114)(9, 113)(10, 112)(11, 111)(12, 110)(13, 109)(14, 108)(15, 107)(16, 106)(17, 105)(18, 104)(19, 103)(20, 102)(21, 101)(22, 100)(23, 99)(24, 98)(25, 97)(26, 96)(27, 95)(28, 94)(29, 93)(30, 92)(31, 91)(32, 90)(33, 89)(34, 88)(35, 87)(36, 86)(37, 85)(38, 84)(39, 83)(40, 82)(41, 81)(42, 80)(43, 79)(44, 78)(45, 77)(46, 76)(47, 75)(48, 74)(49, 73)(50, 72)(51, 71)(52, 70)(53, 69)(54, 68)(55, 67)(56, 66)(57, 65)(58, 64)(59, 63)(60, 62)(121, 183)(122, 182)(123, 181)(124, 180)(125, 179)(126, 178)(127, 177)(128, 176)(129, 175)(130, 174)(131, 173)(132, 172)(133, 171)(134, 170)(135, 169)(136, 168)(137, 167)(138, 166)(139, 165)(140, 164)(141, 163)(142, 162)(143, 161)(144, 160)(145, 159)(146, 158)(147, 157)(148, 156)(149, 155)(150, 154)(151, 153)(184, 240)(185, 239)(186, 238)(187, 237)(188, 236)(189, 235)(190, 234)(191, 233)(192, 232)(193, 231)(194, 230)(195, 229)(196, 228)(197, 227)(198, 226)(199, 225)(200, 224)(201, 223)(202, 222)(203, 221)(204, 220)(205, 219)(206, 218)(207, 217)(208, 216)(209, 215)(210, 214)(211, 213)
b: (2, 183)(3, 63)(4, 125)(6, 187)(7, 67)(8, 129)(10, 191)(11, 71)(12, 133)(14, 195)(15, 75)(16, 137)(18, 199)(19, 79)(20, 141)(22, 203)(23, 83)(24, 145)(26, 207)(27, 87)(28, 149)(30, 211)(31, 91)(32, 153)(34, 215)(35, 95)(36, 157)(38, 219)(39, 99)(40, 161)(42, 223)(43, 103)(44, 165)(46, 227)(47, 107)(48, 169)(50, 231)(51, 111)(52, 173)(54, 235)(55, 115)(56, 177)(58, 239)(59, 119)(60, 181)(62, 123)(64, 185)(66, 127)(68, 189)(70, 131)(72, 193)(74, 135)(76, 197)(78, 139)(80, 201)(82, 143)(84, 205)(86, 147)(88, 209)(90, 151)(92, 213)(94, 155)(96, 217)(98, 159)(100, 221)(102, 163)(104, 225)(106, 167)(108, 229)(110, 171)(112, 233)(114, 175)(116, 237)(118, 179)(120, 121)(122, 182)(126, 186)(130, 190)(134, 194)(138, 198)(142, 202)(146, 206)(150, 210)(154, 214)(158, 218)(162, 222)(166, 226)(170, 230)(174, 234)(178, 238)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 11 ]
240
-1 121 2 183 120
-2 1 122 3 184
-3 2 123 4 185
-4 3 124 5 186
-5 187 4 125 6
-6 188 5 126 7
-7 189 6 127 8
-8 190 7 128 9
-9 191 8 129 10
-10 11 192 9 130
-11 12 193 10 131
-12 11 132 13 194
-13 12 133 14 195
-14 13 134 15 196
-15 14 135 16 197
-16 198 15 136 17
-17 199 16 137 18
-18 200 17 138 19
-19 201 18 139 20
-20 202 19 140 21
-21 22 203 20 141
-22 23 204 21 142
-23 22 143 24 205
-24 23 144 25 206
-25 24 145 26 207
-26 25 146 27 208
-27 209 26 147 28
-28 210 27 148 29
-29 211 28 149 30
-30 212 29 150 31
-31 213 30 151 32
-32 33 214 31 152
-33 34 215 32 153
-34 33 154 35 216
-35 34 155 36 217
-36 35 156 37 218
-37 36 157 38 219
-38 220 37 158 39
-39 221 38 159 40
-40 222 39 160 41
-41 223 40 161 42
-42 224 41 162 43
-43 44 225 42 163
-44 45 226 43 164
-45 44 165 46 227
-46 45 166 47 228
-47 46 167 48 229
-48 47 168 49 230
-49 231 48 169 50
-50 232 49 170 51
-51 233 50 171 52
-52 234 51 172 53
-53 235 52 173 54
-54 55 236 53 174
-55 56 237 54 175
-56 55 176 57 238
-57 56 177 58 239
-58 57 178 59 240
-59 121 58 179 60
-60 122 59 180 61
-61 123 60 181 62
-62 124 61 182 63
-63 125 62 183 64
-64 126 63 184 65
-65 66 127 64 185
-66 67 128 65 186
-67 66 187 68 129
-68 67 188 69 130
-69 68 189 70 131
-70 132 69 190 71
-71 133 70 191 72
-72 134 71 192 73
-73 135 72 193 74
-74 136 73 194 75
-75 137 74 195 76
-76 77 138 75 196
-77 78 139 76 197
-78 77 198 79 140
-79 78 199 80 141
-80 79 200 81 142
-81 143 80 201 82
-82 144 81 202 83
-83 145 82 203 84
-84 146 83 204 85
-85 147 84 205 86
-86 148 85 206 87
-87 88 149 86 207
-88 89 150 87 208
-89 88 209 90 151
-90 89 210 91 152
-91 90 211 92 153
-92 154 91 212 93
-93 155 92 213 94
-94 156 93 214 95
-95 157 94 215 96
-96 158 95 216 97
-97 159 96 217 98
-98 99 160 97 218
-99 100 161 98 219
-100 99 220 101 162
-101 100 221 102 163
-102 101 222 103 164
-103 165 102 223 104
-104 166 103 224 105
-105 167 104 225 106
-106 168 105 226 107
-107 169 106 227 108
-108 170 107 228 109
-109 110 171 108 229
-110 111 172 109 230
-111 110 231 112 173
-112 111 232 113 174
-113 112 233 114 175
-114 176 113 234 115
-115 177 114 235 116
-116 178 115 236 117
-117 179 116 237 118
-118 180 117 238 119
-119 181 118 239 120
-120 1 182 119 240
-121 1 122 59 240
-122 121 2 123 60
-123 122 3 124 61
-124 123 4 125 62
-125 124 5 126 63
-126 125 6 127 64
-127 126 7 128 65
-128 66 127 8 129
-129 67 128 9 130
-130 68 129 10 131
-131 11 132 69 130
-132 12 133 70 131
-133 132 13 134 71
-134 133 14 135 72
-135 134 15 136 73
-136 135 16 137 74
-137 136 17 138 75
-138 137 18 139 76
-139 77 138 19 140
-140 78 139 20 141
-141 79 140 21 142
-142 22 143 80 141
-143 23 144 81 142
-144 143 24 145 82
-145 144 25 146 83
-146 145 26 147 84
-147 146 27 148 85
-148 147 28 149 86
-149 148 29 150 87
-150 88 149 30 151
-151 89 150 31 152
-152 90 151 32 153
-153 33 154 91 152
-154 34 155 92 153
-155 154 35 156 93
-156 155 36 157 94
-157 156 37 158 95
-158 157 38 159 96
-159 158 39 160 97
-160 159 40 161 98
-161 99 160 41 162
-162 100 161 42 163
-163 101 162 43 164
-164 44 165 102 163
-165 45 166 103 164
-166 165 46 167 104
-167 166 47 168 105
-168 167 48 169 106
-169 168 49 170 107
-170 169 50 171 108
-171 170 51 172 109
-172 110 171 52 173
-173 111 172 53 174
-174 112 173 54 175
-175 55 176 113 174
-176 56 177 114 175
-177 176 57 178 115
-178 177 58 179 116
-179 178 59 180 117
-180 179 60 181 118
-181 180 61 182 119
-182 181 62 183 120
-183 1 182 63 184
-184 2 183 64 185
-185 3 184 65 186
-186 66 187 4 185
-187 67 188 5 186
-188 187 68 189 6
-189 188 69 190 7
-190 189 70 191 8
-191 190 71 192 9
-192 191 72 193 10
-193 11 192 73 194
-194 12 193 74 195
-195 13 194 75 196
-196 14 195 76 197
-197 77 198 15 196
-198 78 199 16 197
-199 198 79 200 17
-200 199 80 201 18
-201 200 81 202 19
-202 201 82 203 20
-203 202 83 204 21
-204 22 203 84 205
-205 23 204 85 206
-206 24 205 86 207
-207 25 206 87 208
-208 88 209 26 207
-209 89 210 27 208
-210 209 90 211 28
-211 210 91 212 29
-212 211 92 213 30
-213 212 93 214 31
-214 213 94 215 32
-215 33 214 95 216
-216 34 215 96 217
-217 35 216 97 218
-218 36 217 98 219
-219 99 220 37 218
-220 100 221 38 219
-221 220 101 222 39
-222 221 102 223 40
-223 222 103 224 41
-224 223 104 225 42
-225 224 105 226 43
-226 44 225 106 227
-227 45 226 107 228
-228 46 227 108 229
-229 47 228 109 230
-230 110 231 48 229
-231 111 232 49 230
-232 231 112 233 50
-233 232 113 234 51
-234 233 114 235 52
-235 234 115 236 53
-236 235 116 237 54
-237 55 236 117 238
-238 56 237 118 239
-239 57 238 119 240
-240 121 58 239 120
0

**************