[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 28 ] =
MPS(4,120;7).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {120, 124}, {117, 121}, {118, 122}, {119, 123}, {160, 184}, {167,
191}, {166, 190}, {165, 189}, {164, 188}, {163, 187}, {162, 186}, {161, 185},
{148, 183}, {156, 191}, {152, 187}, {147, 182}, {155, 190}, {153, 188}, {146,
181}, {154, 189}, {157, 181}, {159, 183}, {158, 182}, {149, 184}, {151, 186},
{150, 185}, {64, 121}, {66, 123}, {68, 125}, {70, 127}, {4, 63}, {65, 122}, {69,
126}, {1, 61}, {2, 62}, {3, 63}, {3, 62}, {2, 61}, {67, 124}, {61, 125}, {62,
126}, {63, 127}, {4, 64}, {55, 115}, {54, 114}, {53, 113}, {52, 112}, {47, 107},
{46, 106}, {45, 105}, {44, 104}, {39, 99}, {38, 98}, {37, 97}, {36, 96}, {5,
65}, {6, 66}, {7, 67}, {12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21,
81}, {22, 82}, {23, 83}, {28, 88}, {29, 89}, {30, 90}, {31, 91}, {60, 120}, {5,
64}, {55, 114}, {53, 112}, {47, 106}, {45, 104}, {39, 98}, {37, 96}, {7, 66},
{13, 72}, {15, 74}, {21, 80}, {23, 82}, {29, 88}, {31, 90}, {6, 65}, {54, 113},
{46, 105}, {38, 97}, {14, 73}, {22, 81}, {30, 89}, {8, 67}, {56, 115}, {44,
103}, {40, 99}, {12, 71}, {24, 83}, {28, 87}, {60, 119}, {8, 68}, {57, 117},
{56, 116}, {43, 103}, {42, 102}, {41, 101}, {40, 100}, {9, 69}, {10, 70}, {11,
71}, {24, 84}, {25, 85}, {26, 86}, {27, 87}, {58, 118}, {59, 119}, {9, 68}, {57,
116}, {43, 102}, {41, 100}, {11, 70}, {25, 84}, {27, 86}, {59, 118}, {10, 69},
{42, 101}, {26, 85}, {58, 117}, {128, 212}, {139, 223}, {138, 222}, {137, 221},
{136, 220}, {131, 215}, {130, 214}, {129, 213}, {16, 75}, {52, 111}, {48, 107},
{20, 79}, {16, 76}, {135, 219}, {134, 218}, {133, 217}, {132, 216}, {51, 111},
{50, 110}, {49, 109}, {48, 108}, {17, 77}, {18, 78}, {19, 79}, {17, 76}, {159,
194}, {157, 192}, {51, 110}, {49, 108}, {19, 78}, {18, 77}, {158, 193}, {128,
223}, {50, 109}, {129, 224}, {145, 240}, {143, 238}, {141, 236}, {139, 234},
{137, 232}, {135, 230}, {133, 228}, {131, 226}, {130, 225}, {180, 215}, {176,
211}, {172, 207}, {168, 203}, {164, 199}, {160, 195}, {142, 237}, {138, 233},
{134, 229}, {161, 196}, {179, 214}, {177, 212}, {171, 206}, {169, 204}, {163,
198}, {132, 227}, {178, 213}, {170, 205}, {162, 197}, {140, 235}, {168, 192},
{175, 199}, {174, 198}, {173, 197}, {172, 196}, {171, 195}, {170, 194}, {169,
193}, {140, 224}, {156, 240}, {143, 227}, {142, 226}, {141, 225}, {165, 200},
{167, 202}, {136, 231}, {166, 201}, {144, 228}, {155, 239}, {154, 238}, {153,
237}, {152, 236}, {147, 231}, {146, 230}, {145, 229}, {176, 200}, {180, 204},
{179, 203}, {178, 202}, {177, 201}, {1, 120}, {32, 91}, {36, 95}, {32, 92},
{151, 235}, {150, 234}, {149, 233}, {148, 232}, {33, 93}, {34, 94}, {35, 95},
{33, 92}, {175, 210}, {173, 208}, {35, 94}, {34, 93}, {174, 209}, {144, 239},
{63, 180}, {48, 189}, {50, 191}, {62, 179}, {49, 190}, {61, 178}, {43, 184},
{47, 188}, {44, 185}, {46, 187}, {45, 186}, {40, 181}, {42, 183}, {32, 190},
{33, 191}, {41, 182}, {121, 216}, {127, 222}, {123, 218}, {125, 220}, {23, 181},
{26, 184}, {27, 185}, {30, 188}, {31, 189}, {122, 217}, {126, 221}, {28, 186},
{29, 187}, {124, 219}, {124, 208}, {125, 209}, {126, 210}, {127, 211}, {24,
182}, {25, 183}, {121, 205}, {122, 206}, {123, 207}, {64, 128}, {65, 129}, {66,
130}, {67, 131}, {68, 132}, {69, 133}, {70, 134}, {71, 135}, {72, 136}, {73,
137}, {74, 138}, {75, 139}, {76, 140}, {77, 141}, {78, 142}, {79, 143}, {80,
144}, {81, 145}, {82, 146}, {83, 147}, {84, 148}, {85, 149}, {86, 150}, {87,
151}, {88, 152}, {89, 153}, {90, 154}, {91, 155}, {92, 156}, {93, 157}, {94,
158}, {95, 159}, {96, 160}, {97, 161}, {98, 162}, {99, 163}, {100, 164}, {101,
165}, {102, 166}, {103, 167}, {104, 168}, {105, 169}, {106, 170}, {107, 171},
{108, 172}, {109, 173}, {110, 174}, {111, 175}, {112, 176}, {113, 177}, {114,
178}, {115, 179}, {116, 180}, {71, 128}, {79, 136}, {87, 144}, {95, 152}, {103,
160}, {111, 168}, {119, 176}, {2, 203}, {38, 239}, {36, 237}, {4, 205}, {6,
207}, {16, 217}, {18, 219}, {20, 221}, {22, 223}, {32, 233}, {34, 235}, {72,
129}, {74, 131}, {76, 133}, {78, 135}, {88, 145}, {90, 147}, {92, 149}, {94,
151}, {104, 161}, {106, 163}, {108, 165}, {110, 167}, {120, 177}, {1, 202}, {37,
238}, {5, 206}, {17, 218}, {21, 222}, {33, 234}, {73, 130}, {77, 134}, {89,
146}, {93, 150}, {105, 162}, {109, 166}, {3, 204}, {19, 220}, {35, 236}, {75,
132}, {91, 148}, {107, 164}, {7, 208}, {39, 240}, {15, 216}, {8, 209}, {10,
211}, {12, 213}, {14, 215}, {80, 137}, {82, 139}, {84, 141}, {86, 143}, {112,
169}, {114, 171}, {116, 173}, {118, 175}, {1, 219}, {4, 222}, {5, 223}, {9,
210}, {13, 214}, {81, 138}, {85, 142}, {113, 170}, {117, 174}, {2, 220}, {3,
221}, {11, 212}, {83, 140}, {115, 172}, {34, 192}, {55, 213}, {54, 212}, {51,
209}, {50, 208}, {47, 205}, {46, 204}, {43, 201}, {42, 200}, {39, 197}, {38,
196}, {35, 193}, {58, 216}, {59, 217}, {6, 224}, {53, 211}, {52, 210}, {45,
203}, {44, 202}, {37, 195}, {36, 194}, {7, 225}, {14, 232}, {15, 233}, {22,
240}, {60, 218}, {8, 226}, {9, 227}, {12, 230}, {13, 231}, {10, 228}, {57, 215},
{56, 214}, {41, 199}, {40, 198}, {11, 229}, {51, 192}, {55, 196}, {59, 200},
{52, 193}, {54, 195}, {60, 201}, {23, 224}, {53, 194}, {31, 232}, {24, 225},
{26, 227}, {28, 229}, {30, 231}, {96, 153}, {98, 155}, {100, 157}, {102, 159},
{16, 234}, {17, 235}, {20, 238}, {21, 239}, {25, 226}, {29, 230}, {97, 154},
{101, 158}, {56, 197}, {58, 199}, {18, 236}, {49, 207}, {48, 206}, {19, 237},
{27, 228}, {57, 198}, {99, 156} }>;
(II) A more general form is to represent the graph as the orbit of {120, 124}
under the group generated by the following permutations:
a: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12,
50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22,
40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 120)(62,
119)(63, 118)(64, 117)(65, 116)(66, 115)(67, 114)(68, 113)(69, 112)(70, 111)(71,
110)(72, 109)(73, 108)(74, 107)(75, 106)(76, 105)(77, 104)(78, 103)(79, 102)(80,
101)(81, 100)(82, 99)(83, 98)(84, 97)(85, 96)(86, 95)(87, 94)(88, 93)(89,
92)(90, 91)(122, 180)(123, 179)(124, 178)(125, 177)(126, 176)(127, 175)(128,
174)(129, 173)(130, 172)(131, 171)(132, 170)(133, 169)(134, 168)(135, 167)(136,
166)(137, 165)(138, 164)(139, 163)(140, 162)(141, 161)(142, 160)(143, 159)(144,
158)(145, 157)(146, 156)(147, 155)(148, 154)(149, 153)(150, 152)(181, 240)(182,
239)(183, 238)(184, 237)(185, 236)(186, 235)(187, 234)(188, 233)(189, 232)(190,
231)(191, 230)(192, 229)(193, 228)(194, 227)(195, 226)(196, 225)(197, 224)(198,
223)(199, 222)(200, 221)(201, 220)(202, 219)(203, 218)(204, 217)(205, 216)(206,
215)(207, 214)(208, 213)(209, 212)(210, 211) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 61, 125, 209, 51, 111, 175, 199, 41, 101, 165, 189, 31, 91, 155, 239, 21,
81, 145, 229, 11, 71, 135, 219)(2, 68, 174, 192, 52, 118, 164, 182, 42, 108,
154, 232, 32, 98, 144, 222, 22, 88, 134, 212, 12, 78, 124, 202)(3, 75, 163, 235,
53, 65, 153, 225, 43, 115, 143, 215, 33, 105, 133, 205, 23, 95, 123, 195, 13,
85, 173, 185)(4, 82, 152, 218, 54, 72, 142, 208, 44, 62, 132, 198, 34, 112, 122,
188, 24, 102, 172, 238, 14, 92, 162, 228)(5, 89, 141, 201, 55, 79, 131, 191, 45,
69, 121, 181, 35, 119, 171, 231, 25, 109, 161, 221, 15, 99, 151, 211)(6, 96,
130, 184, 56, 86, 180, 234, 46, 76, 170, 224, 36, 66, 160, 214, 26, 116, 150,
204, 16, 106, 140, 194)(7, 103, 179, 227, 57, 93, 169, 217, 47, 83, 159, 207,
37, 73, 149, 197, 27, 63, 139, 187, 17, 113, 129, 237)(8, 110, 168, 210, 58,
100, 158, 200, 48, 90, 148, 190, 38, 80, 138, 240, 28, 70, 128, 230, 18, 120,
178, 220)(9, 117, 157, 193, 59, 107, 147, 183, 49, 97, 137, 233, 39, 87, 127,
223, 29, 77, 177, 213, 19, 67, 167, 203)(10, 64, 146, 236, 60, 114, 136, 226,
50, 104, 126, 216, 40, 94, 176, 206, 30, 84, 166, 196, 20, 74, 156, 186)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
C4[ 240, 28 ]
240
-1 202 61 120 219
-2 220 203 61 62
-3 221 204 62 63
-4 222 205 63 64
-5 223 206 64 65
-6 66 224 207 65
-7 66 67 225 208
-8 209 67 68 226
-9 210 68 69 227
-10 211 69 70 228
-11 212 70 71 229
-12 213 71 72 230
-13 231 214 72 73
-14 232 215 73 74
-15 233 216 74 75
-16 234 217 75 76
-17 77 235 218 76
-18 77 78 236 219
-19 220 78 79 237
-20 221 79 80 238
-21 222 80 81 239
-22 223 81 82 240
-23 224 82 181 83
-24 225 83 182 84
-25 226 84 183 85
-26 227 85 184 86
-27 228 86 185 87
-28 88 229 87 186
-29 88 187 89 230
-30 231 89 188 90
-31 232 90 189 91
-32 233 91 190 92
-33 234 92 191 93
-34 235 93 192 94
-35 236 94 193 95
-36 237 95 194 96
-37 238 96 195 97
-38 239 97 196 98
-39 99 240 98 197
-40 99 198 100 181
-41 100 199 101 182
-42 101 200 102 183
-43 102 201 103 184
-44 103 202 104 185
-45 104 203 105 186
-46 187 105 204 106
-47 188 106 205 107
-48 189 107 206 108
-49 190 108 207 109
-50 110 191 109 208
-51 110 209 111 192
-52 111 210 112 193
-53 112 211 113 194
-54 113 212 114 195
-55 114 213 115 196
-56 115 214 116 197
-57 198 116 215 117
-58 199 117 216 118
-59 200 118 217 119
-60 201 119 218 120
-61 1 2 178 125
-62 2 3 179 126
-63 3 4 180 127
-64 121 4 5 128
-65 122 5 6 129
-66 123 6 7 130
-67 124 7 8 131
-68 132 125 8 9
-69 133 126 9 10
-70 11 134 127 10
-71 11 12 135 128
-72 12 13 136 129
-73 13 14 137 130
-74 14 15 138 131
-75 132 15 16 139
-76 133 16 17 140
-77 134 17 18 141
-78 135 18 19 142
-79 143 136 19 20
-80 144 137 20 21
-81 22 145 138 21
-82 22 23 146 139
-83 23 24 147 140
-84 24 25 148 141
-85 25 26 149 142
-86 143 26 27 150
-87 144 27 28 151
-88 145 28 29 152
-89 146 29 30 153
-90 154 147 30 31
-91 155 148 31 32
-92 33 156 149 32
-93 33 34 157 150
-94 34 35 158 151
-95 35 36 159 152
-96 36 37 160 153
-97 154 37 38 161
-98 155 38 39 162
-99 156 39 40 163
-100 157 40 41 164
-101 165 158 41 42
-102 166 159 42 43
-103 44 167 160 43
-104 44 45 168 161
-105 45 46 169 162
-106 46 47 170 163
-107 47 48 171 164
-108 165 48 49 172
-109 166 49 50 173
-110 167 50 51 174
-111 168 51 52 175
-112 176 169 52 53
-113 177 170 53 54
-114 55 178 171 54
-115 55 56 179 172
-116 56 57 180 173
-117 121 57 58 174
-118 122 58 59 175
-119 176 123 59 60
-120 1 177 124 60
-121 117 205 216 64
-122 118 206 217 65
-123 66 119 207 218
-124 67 120 208 219
-125 209 220 68 61
-126 210 221 69 62
-127 211 222 70 63
-128 212 223 71 64
-129 213 224 72 65
-130 66 214 225 73
-131 67 215 226 74
-132 68 216 227 75
-133 69 217 228 76
-134 77 70 218 229
-135 78 71 219 230
-136 220 231 79 72
-137 221 232 80 73
-138 222 233 81 74
-139 223 234 82 75
-140 224 235 83 76
-141 77 225 236 84
-142 78 226 237 85
-143 79 227 238 86
-144 80 228 239 87
-145 88 81 229 240
-146 89 82 181 230
-147 231 90 83 182
-148 232 91 84 183
-149 233 92 85 184
-150 234 93 86 185
-151 235 94 87 186
-152 88 187 236 95
-153 89 188 237 96
-154 90 189 238 97
-155 91 190 239 98
-156 99 92 191 240
-157 100 93 181 192
-158 101 94 182 193
-159 102 95 183 194
-160 103 96 184 195
-161 104 97 185 196
-162 105 98 186 197
-163 99 187 198 106
-164 100 188 199 107
-165 101 189 200 108
-166 102 190 201 109
-167 110 103 191 202
-168 111 104 192 203
-169 112 105 193 204
-170 113 106 194 205
-171 114 107 195 206
-172 115 108 196 207
-173 116 109 197 208
-174 110 198 209 117
-175 111 199 210 118
-176 112 200 211 119
-177 113 201 212 120
-178 114 202 213 61
-179 115 203 214 62
-180 116 204 215 63
-181 23 146 157 40
-182 24 147 158 41
-183 25 148 159 42
-184 26 149 160 43
-185 44 27 150 161
-186 45 28 151 162
-187 46 29 152 163
-188 47 30 153 164
-189 154 165 48 31
-190 155 166 49 32
-191 33 156 167 50
-192 34 157 168 51
-193 35 158 169 52
-194 36 159 170 53
-195 37 160 171 54
-196 55 38 161 172
-197 56 39 162 173
-198 57 40 163 174
-199 58 41 164 175
-200 165 176 59 42
-201 166 177 60 43
-202 44 1 167 178
-203 45 2 168 179
-204 46 3 169 180
-205 121 47 4 170
-206 122 48 5 171
-207 123 49 6 172
-208 124 50 7 173
-209 125 51 8 174
-210 126 52 9 175
-211 176 127 53 10
-212 11 177 128 54
-213 55 12 178 129
-214 56 13 179 130
-215 57 14 180 131
-216 121 132 58 15
-217 122 133 59 16
-218 123 134 60 17
-219 1 124 135 18
-220 2 125 136 19
-221 3 126 137 20
-222 4 127 138 21
-223 22 5 128 139
-224 23 6 129 140
-225 24 7 130 141
-226 25 8 131 142
-227 132 143 26 9
-228 133 144 27 10
-229 11 134 145 28
-230 12 135 146 29
-231 13 136 147 30
-232 14 137 148 31
-233 15 138 149 32
-234 33 16 139 150
-235 34 17 140 151
-236 35 18 141 152
-237 36 19 142 153
-238 143 154 37 20
-239 144 155 38 21
-240 22 145 156 39
0