[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 29 ] =
MPS(4,120;13).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {120, 127}, {115, 122}, {117, 124}, {119, 126}, {114, 121}, {118,
125}, {116, 123}, {160, 184}, {167, 191}, {166, 190}, {165, 189}, {164, 188},
{163, 187}, {162, 186}, {161, 185}, {148, 183}, {156, 191}, {152, 187}, {147,
182}, {155, 190}, {153, 188}, {146, 181}, {154, 189}, {157, 181}, {159, 183},
{158, 182}, {149, 184}, {151, 186}, {150, 185}, {72, 126}, {73, 127}, {67, 121},
{70, 124}, {71, 125}, {4, 63}, {1, 61}, {2, 62}, {3, 63}, {3, 62}, {68, 122},
{69, 123}, {2, 61}, {4, 64}, {53, 113}, {52, 112}, {47, 107}, {46, 106}, {45,
105}, {44, 104}, {39, 99}, {38, 98}, {37, 97}, {36, 96}, {5, 65}, {6, 66}, {7,
67}, {12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21, 81}, {22, 82}, {23,
83}, {28, 88}, {29, 89}, {30, 90}, {31, 91}, {54, 114}, {55, 115}, {60, 120},
{5, 64}, {53, 112}, {47, 106}, {45, 104}, {39, 98}, {37, 96}, {7, 66}, {13, 72},
{15, 74}, {21, 80}, {23, 82}, {29, 88}, {31, 90}, {55, 114}, {6, 65}, {54, 113},
{46, 105}, {38, 97}, {14, 73}, {22, 81}, {30, 89}, {8, 67}, {44, 103}, {40, 99},
{12, 71}, {24, 83}, {28, 87}, {56, 115}, {60, 119}, {8, 68}, {43, 103}, {42,
102}, {41, 101}, {40, 100}, {9, 69}, {10, 70}, {11, 71}, {24, 84}, {25, 85},
{26, 86}, {27, 87}, {56, 116}, {57, 117}, {58, 118}, {59, 119}, {9, 68}, {43,
102}, {41, 100}, {11, 70}, {25, 84}, {27, 86}, {57, 116}, {59, 118}, {10, 69},
{42, 101}, {26, 85}, {58, 117}, {128, 212}, {139, 223}, {138, 222}, {137, 221},
{136, 220}, {131, 215}, {130, 214}, {129, 213}, {16, 75}, {52, 111}, {48, 107},
{20, 79}, {16, 76}, {135, 219}, {134, 218}, {133, 217}, {132, 216}, {51, 111},
{50, 110}, {49, 109}, {48, 108}, {17, 77}, {18, 78}, {19, 79}, {17, 76}, {159,
194}, {157, 192}, {51, 110}, {49, 108}, {19, 78}, {18, 77}, {158, 193}, {50,
109}, {128, 223}, {129, 224}, {145, 240}, {143, 238}, {141, 236}, {139, 234},
{137, 232}, {135, 230}, {133, 228}, {131, 226}, {130, 225}, {180, 215}, {176,
211}, {172, 207}, {168, 203}, {164, 199}, {160, 195}, {142, 237}, {138, 233},
{134, 229}, {161, 196}, {179, 214}, {177, 212}, {171, 206}, {169, 204}, {163,
198}, {132, 227}, {178, 213}, {170, 205}, {162, 197}, {140, 235}, {168, 192},
{175, 199}, {174, 198}, {173, 197}, {172, 196}, {171, 195}, {170, 194}, {169,
193}, {140, 224}, {156, 240}, {143, 227}, {142, 226}, {141, 225}, {165, 200},
{167, 202}, {136, 231}, {166, 201}, {144, 228}, {155, 239}, {154, 238}, {153,
237}, {152, 236}, {147, 231}, {146, 230}, {145, 229}, {176, 200}, {180, 204},
{179, 203}, {178, 202}, {177, 201}, {1, 120}, {32, 91}, {36, 95}, {32, 92},
{151, 235}, {150, 234}, {149, 233}, {148, 232}, {35, 95}, {34, 94}, {33, 93},
{33, 92}, {175, 210}, {173, 208}, {35, 94}, {34, 93}, {174, 209}, {144, 239},
{52, 183}, {56, 187}, {60, 191}, {51, 182}, {57, 188}, {59, 190}, {50, 181},
{58, 189}, {53, 184}, {55, 186}, {62, 176}, {63, 177}, {54, 185}, {61, 175},
{121, 216}, {123, 218}, {125, 220}, {127, 222}, {122, 217}, {126, 221}, {124,
219}, {16, 184}, {17, 185}, {18, 186}, {19, 187}, {20, 188}, {21, 189}, {22,
190}, {23, 191}, {124, 208}, {125, 209}, {126, 210}, {127, 211}, {121, 205},
{122, 206}, {123, 207}, {13, 181}, {14, 182}, {15, 183}, {61, 128}, {63, 130},
{62, 129}, {1, 192}, {49, 240}, {47, 238}, {45, 236}, {43, 234}, {41, 232}, {39,
230}, {37, 228}, {35, 226}, {33, 224}, {3, 194}, {5, 196}, {7, 198}, {9, 200},
{11, 202}, {13, 204}, {15, 206}, {17, 208}, {19, 210}, {21, 212}, {23, 214},
{25, 216}, {27, 218}, {29, 220}, {31, 222}, {2, 193}, {46, 237}, {42, 233}, {38,
229}, {34, 225}, {6, 197}, {10, 201}, {14, 205}, {18, 209}, {22, 213}, {26,
217}, {30, 221}, {64, 131}, {68, 135}, {72, 139}, {76, 143}, {80, 147}, {84,
151}, {88, 155}, {92, 159}, {96, 163}, {100, 167}, {104, 171}, {108, 175}, {112,
179}, {65, 132}, {67, 134}, {73, 140}, {75, 142}, {81, 148}, {83, 150}, {89,
156}, {91, 158}, {97, 164}, {99, 166}, {105, 172}, {107, 174}, {113, 180}, {4,
195}, {44, 235}, {36, 227}, {12, 203}, {20, 211}, {28, 219}, {66, 133}, {74,
141}, {82, 149}, {90, 157}, {98, 165}, {106, 173}, {74, 128}, {75, 129}, {78,
132}, {79, 133}, {90, 144}, {91, 145}, {94, 148}, {95, 149}, {106, 160}, {107,
161}, {110, 164}, {111, 165}, {69, 136}, {71, 138}, {85, 152}, {87, 154}, {101,
168}, {103, 170}, {76, 130}, {77, 131}, {92, 146}, {93, 147}, {108, 162}, {109,
163}, {8, 199}, {40, 231}, {24, 215}, {70, 137}, {86, 153}, {102, 169}, {80,
134}, {81, 135}, {88, 142}, {89, 143}, {112, 166}, {113, 167}, {120, 174}, {24,
192}, {25, 193}, {26, 194}, {27, 195}, {28, 196}, {29, 197}, {30, 198}, {31,
199}, {56, 224}, {57, 225}, {58, 226}, {59, 227}, {60, 228}, {82, 136}, {83,
137}, {86, 140}, {87, 141}, {114, 168}, {115, 169}, {118, 172}, {119, 173}, {77,
144}, {79, 146}, {109, 176}, {111, 178}, {84, 138}, {85, 139}, {116, 170}, {117,
171}, {16, 207}, {48, 239}, {78, 145}, {110, 177}, {1, 229}, {2, 230}, {3, 231},
{8, 236}, {9, 237}, {10, 238}, {11, 239}, {32, 200}, {53, 221}, {52, 220}, {51,
219}, {50, 218}, {49, 217}, {48, 216}, {39, 207}, {38, 206}, {37, 205}, {36,
204}, {35, 203}, {34, 202}, {33, 201}, {54, 222}, {55, 223}, {4, 232}, {5, 233},
{6, 234}, {7, 235}, {64, 178}, {65, 179}, {66, 180}, {96, 150}, {97, 151}, {104,
158}, {105, 159}, {40, 208}, {47, 215}, {46, 214}, {45, 213}, {44, 212}, {43,
211}, {42, 210}, {41, 209}, {98, 152}, {99, 153}, {102, 156}, {103, 157}, {12,
240}, {93, 160}, {95, 162}, {100, 154}, {101, 155}, {32, 223}, {94, 161}
}>;
(II) A more general form is to represent the graph as the orbit of {120, 127}
under the group generated by the following permutations:
a: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12,
50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22,
40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 120)(62,
119)(63, 118)(64, 117)(65, 116)(66, 115)(67, 114)(68, 113)(69, 112)(70, 111)(71,
110)(72, 109)(73, 108)(74, 107)(75, 106)(76, 105)(77, 104)(78, 103)(79, 102)(80,
101)(81, 100)(82, 99)(83, 98)(84, 97)(85, 96)(86, 95)(87, 94)(88, 93)(89,
92)(90, 91)(122, 180)(123, 179)(124, 178)(125, 177)(126, 176)(127, 175)(128,
174)(129, 173)(130, 172)(131, 171)(132, 170)(133, 169)(134, 168)(135, 167)(136,
166)(137, 165)(138, 164)(139, 163)(140, 162)(141, 161)(142, 160)(143, 159)(144,
158)(145, 157)(146, 156)(147, 155)(148, 154)(149, 153)(150, 152)(181, 240)(182,
239)(183, 238)(184, 237)(185, 236)(186, 235)(187, 234)(188, 233)(189, 232)(190,
231)(191, 230)(192, 229)(193, 228)(194, 227)(195, 226)(196, 225)(197, 224)(198,
223)(199, 222)(200, 221)(201, 220)(202, 219)(203, 218)(204, 217)(205, 216)(206,
215)(207, 214)(208, 213)(209, 212)(210, 211) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)
c: (1, 61, 128, 212, 21, 81, 148, 232, 41, 101, 168, 192)(2, 74, 177, 189, 22,
94, 137, 209, 42, 114, 157, 229)(3, 87, 166, 226, 23, 107, 126, 186, 43, 67,
146, 206)(4, 100, 155, 203, 24, 120, 175, 223, 44, 80, 135, 183)(5, 113, 144,
240, 25, 73, 164, 200, 45, 93, 124, 220)(6, 66, 133, 217, 26, 86, 153, 237, 46,
106, 173, 197)(7, 79, 122, 194, 27, 99, 142, 214, 47, 119, 162, 234)(8, 92, 171,
231, 28, 112, 131, 191, 48, 72, 151, 211)(9, 105, 160, 208, 29, 65, 180, 228,
49, 85, 140, 188)(10, 118, 149, 185, 30, 78, 169, 205, 50, 98, 129, 225)(11, 71,
138, 222, 31, 91, 158, 182, 51, 111, 178, 202)(12, 84, 127, 199, 32, 104, 147,
219, 52, 64, 167, 239)(13, 97, 176, 236, 33, 117, 136, 196, 53, 77, 156,
216)(14, 110, 165, 213, 34, 70, 125, 233, 54, 90, 145, 193)(15, 63, 154, 190,
35, 83, 174, 210, 55, 103, 134, 230)(16, 76, 143, 227, 36, 96, 163, 187, 56,
116, 123, 207)(17, 89, 132, 204, 37, 109, 152, 224, 57, 69, 172, 184)(18, 102,
121, 181, 38, 62, 141, 201, 58, 82, 161, 221)(19, 115, 170, 218, 39, 75, 130,
238, 59, 95, 150, 198)(20, 68, 159, 195, 40, 88, 179, 215, 60, 108, 139,
235)
C4[ 240, 29 ]
240
-1 192 61 229 120
-2 61 193 62 230
-3 231 62 194 63
-4 232 63 195 64
-5 233 64 196 65
-6 66 234 65 197
-7 66 198 67 235
-8 67 199 68 236
-9 68 200 69 237
-10 69 201 70 238
-11 70 202 71 239
-12 71 203 72 240
-13 181 72 204 73
-14 182 73 205 74
-15 183 74 206 75
-16 184 75 207 76
-17 77 185 76 208
-18 77 209 78 186
-19 187 78 210 79
-20 188 79 211 80
-21 189 80 212 81
-22 190 81 213 82
-23 191 82 214 83
-24 192 83 215 84
-25 193 84 216 85
-26 194 85 217 86
-27 195 86 218 87
-28 88 196 87 219
-29 88 220 89 197
-30 198 89 221 90
-31 199 90 222 91
-32 200 91 223 92
-33 201 92 224 93
-34 202 93 225 94
-35 203 94 226 95
-36 204 95 227 96
-37 205 96 228 97
-38 206 97 229 98
-39 99 207 98 230
-40 99 231 100 208
-41 209 100 232 101
-42 210 101 233 102
-43 211 102 234 103
-44 212 103 235 104
-45 213 104 236 105
-46 214 105 237 106
-47 215 106 238 107
-48 216 107 239 108
-49 217 108 240 109
-50 110 181 218 109
-51 110 111 182 219
-52 220 111 112 183
-53 221 112 113 184
-54 222 113 114 185
-55 223 114 115 186
-56 187 224 115 116
-57 188 225 116 117
-58 189 226 117 118
-59 190 227 118 119
-60 191 228 119 120
-61 1 2 128 175
-62 176 2 3 129
-63 177 3 4 130
-64 178 4 5 131
-65 132 179 5 6
-66 133 180 6 7
-67 121 134 7 8
-68 122 135 8 9
-69 123 136 9 10
-70 11 124 137 10
-71 11 12 125 138
-72 12 13 126 139
-73 13 14 127 140
-74 14 15 128 141
-75 15 16 129 142
-76 143 16 17 130
-77 144 17 18 131
-78 132 145 18 19
-79 133 146 19 20
-80 134 147 20 21
-81 22 135 148 21
-82 22 23 136 149
-83 23 24 137 150
-84 24 25 138 151
-85 25 26 139 152
-86 26 27 140 153
-87 154 27 28 141
-88 155 28 29 142
-89 143 156 29 30
-90 144 157 30 31
-91 145 158 31 32
-92 33 146 159 32
-93 33 34 147 160
-94 34 35 148 161
-95 35 36 149 162
-96 36 37 150 163
-97 37 38 151 164
-98 165 38 39 152
-99 166 39 40 153
-100 154 167 40 41
-101 155 168 41 42
-102 156 169 42 43
-103 44 157 170 43
-104 44 45 158 171
-105 45 46 159 172
-106 46 47 160 173
-107 47 48 161 174
-108 48 49 162 175
-109 176 49 50 163
-110 177 50 51 164
-111 165 178 51 52
-112 166 179 52 53
-113 167 180 53 54
-114 55 121 168 54
-115 55 56 122 169
-116 56 57 123 170
-117 57 58 124 171
-118 58 59 125 172
-119 59 60 126 173
-120 1 60 127 174
-121 67 114 205 216
-122 68 115 206 217
-123 69 116 207 218
-124 70 117 208 219
-125 209 220 71 118
-126 210 221 72 119
-127 211 222 73 120
-128 212 223 61 74
-129 213 224 62 75
-130 214 225 63 76
-131 77 215 226 64
-132 78 216 227 65
-133 66 79 217 228
-134 67 80 218 229
-135 68 81 219 230
-136 220 231 69 82
-137 221 232 70 83
-138 222 233 71 84
-139 223 234 72 85
-140 224 235 73 86
-141 225 236 74 87
-142 88 226 237 75
-143 89 227 238 76
-144 77 90 228 239
-145 78 91 229 240
-146 79 92 181 230
-147 231 80 93 182
-148 232 81 94 183
-149 233 82 95 184
-150 234 83 96 185
-151 235 84 97 186
-152 187 236 85 98
-153 99 188 237 86
-154 100 189 238 87
-155 88 101 190 239
-156 89 102 191 240
-157 90 103 181 192
-158 91 104 182 193
-159 92 105 183 194
-160 93 106 184 195
-161 94 107 185 196
-162 95 108 186 197
-163 187 198 96 109
-164 110 188 199 97
-165 111 189 200 98
-166 99 112 190 201
-167 100 113 191 202
-168 101 114 192 203
-169 102 115 193 204
-170 103 116 194 205
-171 104 117 195 206
-172 105 118 196 207
-173 106 119 197 208
-174 198 209 107 120
-175 199 210 61 108
-176 200 211 62 109
-177 110 201 212 63
-178 111 202 213 64
-179 112 203 214 65
-180 66 113 204 215
-181 13 146 157 50
-182 14 147 158 51
-183 15 148 159 52
-184 16 149 160 53
-185 17 150 161 54
-186 55 18 151 162
-187 56 19 152 163
-188 57 20 153 164
-189 154 165 58 21
-190 22 155 166 59
-191 23 156 167 60
-192 1 24 157 168
-193 2 25 158 169
-194 3 26 159 170
-195 4 27 160 171
-196 5 28 161 172
-197 6 29 162 173
-198 7 30 163 174
-199 8 31 164 175
-200 165 176 9 32
-201 33 166 177 10
-202 11 34 167 178
-203 12 35 168 179
-204 13 36 169 180
-205 121 14 37 170
-206 122 15 38 171
-207 123 16 39 172
-208 124 17 40 173
-209 125 18 41 174
-210 126 19 42 175
-211 176 127 20 43
-212 44 177 128 21
-213 22 45 178 129
-214 23 46 179 130
-215 24 47 180 131
-216 121 132 25 48
-217 122 133 26 49
-218 123 134 27 50
-219 124 135 28 51
-220 125 136 29 52
-221 126 137 30 53
-222 127 138 31 54
-223 55 128 139 32
-224 33 56 129 140
-225 34 57 130 141
-226 35 58 131 142
-227 132 143 36 59
-228 133 144 37 60
-229 1 134 145 38
-230 2 135 146 39
-231 3 136 147 40
-232 4 137 148 41
-233 5 138 149 42
-234 6 139 150 43
-235 44 7 140 151
-236 45 8 141 152
-237 46 9 142 153
-238 143 154 47 10
-239 11 144 155 48
-240 12 145 156 49
0