[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 35 ] =
PL(MSY(4,30,11,0)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {92, 124}, {93, 125}, {92, 125}, {91, 121}, {92, 121}, {91, 124},
{73, 127}, {72, 127}, {61, 124}, {62, 124}, {62, 123}, {61, 123}, {32, 122},
{32, 123}, {32, 126}, {33, 127}, {32, 127}, {33, 126}, {31, 123}, {31, 122},
{13, 125}, {12, 125}, {12, 126}, {13, 126}, {1, 121}, {2, 122}, {1, 122}, {2,
121}, {5, 133}, {43, 171}, {4, 133}, {43, 170}, {4, 134}, {44, 174}, {45, 175},
{82, 208}, {5, 134}, {72, 203}, {44, 175}, {45, 174}, {83, 208}, {18, 150}, {72,
204}, {68, 192}, {29, 153}, {30, 154}, {15, 138}, {69, 192}, {19, 150}, {15,
137}, {19, 149}, {44, 170}, {18, 149}, {29, 154}, {30, 153}, {44, 171}, {42,
162}, {120, 240}, {42, 163}, {85, 220}, {41, 163}, {48, 186}, {86, 220}, {41,
162}, {71, 204}, {48, 187}, {79, 196}, {42, 166}, {71, 203}, {43, 167}, {79,
195}, {42, 167}, {43, 166}, {86, 219}, {48, 190}, {49, 191}, {85, 219}, {48,
191}, {49, 190}, {117, 228}, {120, 233}, {74, 216}, {119, 229}, {118, 228}, {90,
200}, {64, 211}, {118, 229}, {75, 216}, {80, 195}, {10, 158}, {120, 236}, {117,
225}, {116, 224}, {64, 212}, {47, 187}, {26, 142}, {80, 196}, {7, 146}, {120,
237}, {117, 224}, {47, 186}, {11, 158}, {23, 130}, {27, 142}, {7, 145}, {62,
168}, {11, 157}, {23, 129}, {27, 141}, {10, 157}, {118, 225}, {63, 168}, {26,
141}, {46, 182}, {63, 167}, {47, 183}, {8, 145}, {62, 167}, {47, 182}, {16,
137}, {24, 129}, {46, 183}, {8, 146}, {16, 138}, {24, 130}, {119, 236}, {46,
178}, {67, 223}, {75, 215}, {83, 207}, {46, 179}, {66, 223}, {74, 215}, {82,
207}, {90, 199}, {45, 179}, {119, 233}, {118, 232}, {45, 178}, {119, 232}, {34,
130}, {113, 209}, {112, 208}, {80, 240}, {27, 186}, {113, 208}, {34, 131}, {81,
240}, {27, 185}, {66, 224}, {33, 131}, {33, 130}, {114, 209}, {111, 204}, {67,
224}, {2, 166}, {13, 169}, {14, 170}, {17, 181}, {34, 134}, {35, 135}, {3, 166},
{113, 212}, {16, 181}, {28, 185}, {34, 135}, {35, 134}, {3, 165}, {115, 213},
{114, 212}, {16, 182}, {28, 186}, {110, 200}, {111, 201}, {2, 165}, {114, 213},
{13, 170}, {14, 169}, {17, 182}, {111, 200}, {35, 139}, {117, 221}, {116, 220},
{35, 138}, {116, 221}, {69, 236}, {77, 228}, {109, 196}, {36, 142}, {115, 217},
{114, 216}, {70, 236}, {37, 143}, {78, 228}, {110, 196}, {111, 197}, {36, 143},
{115, 216}, {37, 142}, {91, 240}, {110, 197}, {108, 192}, {109, 193}, {70, 235},
{116, 217}, {78, 227}, {109, 192}, {36, 138}, {69, 235}, {77, 227}, {36, 139},
{115, 220}, {110, 193}, {38, 150}, {39, 151}, {88, 232}, {38, 151}, {39, 150},
{89, 232}, {40, 154}, {40, 155}, {5, 177}, {6, 178}, {9, 189}, {21, 161}, {22,
162}, {25, 173}, {38, 146}, {8, 189}, {24, 173}, {38, 147}, {8, 190}, {24, 174},
{37, 147}, {40, 158}, {41, 159}, {91, 237}, {5, 178}, {6, 177}, {9, 190}, {21,
162}, {22, 161}, {25, 174}, {37, 146}, {40, 159}, {41, 158}, {112, 201}, {39,
155}, {113, 205}, {112, 204}, {39, 154}, {112, 205}, {81, 239}, {89, 231}, {80,
239}, {88, 231}, {25, 217}, {26, 218}, {75, 139}, {76, 140}, {11, 202}, {90,
155}, {101, 164}, {104, 169}, {11, 201}, {89, 155}, {102, 164}, {103, 165}, {25,
218}, {26, 217}, {102, 165}, {1, 197}, {100, 160}, {101, 161}, {104, 172}, {105,
173}, {12, 201}, {89, 156}, {101, 160}, {104, 173}, {12, 202}, {65, 135}, {86,
144}, {90, 156}, {1, 198}, {64, 135}, {75, 140}, {76, 139}, {87, 144}, {102,
161}, {64, 136}, {72, 128}, {65, 136}, {73, 128}, {103, 172}, {102, 168}, {103,
169}, {103, 168}, {59, 235}, {68, 148}, {67, 147}, {83, 131}, {84, 132}, {108,
188}, {109, 189}, {3, 210}, {59, 234}, {19, 194}, {108, 189}, {3, 209}, {60,
238}, {19, 193}, {106, 184}, {107, 185}, {60, 239}, {95, 140}, {107, 184}, {4,
209}, {20, 193}, {108, 185}, {4, 210}, {60, 234}, {20, 194}, {78, 152}, {94,
136}, {95, 137}, {60, 235}, {68, 147}, {67, 148}, {79, 152}, {83, 132}, {84,
131}, {95, 136}, {107, 188}, {6, 222}, {71, 159}, {58, 226}, {14, 214}, {22,
206}, {30, 198}, {79, 151}, {87, 143}, {104, 176}, {105, 177}, {7, 222}, {70,
159}, {58, 227}, {15, 214}, {23, 206}, {78, 151}, {86, 143}, {93, 132}, {105,
176}, {7, 221}, {57, 227}, {15, 213}, {23, 205}, {94, 132}, {95, 133}, {6, 221},
{57, 226}, {14, 213}, {22, 205}, {30, 197}, {94, 133}, {106, 177}, {58, 230},
{59, 231}, {92, 128}, {93, 129}, {58, 231}, {59, 230}, {93, 128}, {105, 180},
{106, 180}, {107, 181}, {94, 129}, {106, 181}, {9, 233}, {55, 215}, {54, 214},
{10, 234}, {54, 215}, {74, 171}, {55, 214}, {56, 218}, {73, 171}, {9, 234}, {56,
219}, {10, 233}, {88, 187}, {54, 210}, {84, 176}, {88, 188}, {54, 211}, {73,
172}, {85, 176}, {53, 211}, {70, 160}, {57, 223}, {56, 222}, {74, 172}, {53,
210}, {71, 160}, {57, 222}, {56, 223}, {96, 137}, {63, 212}, {87, 188}, {55,
219}, {63, 211}, {87, 187}, {96, 140}, {97, 141}, {55, 218}, {96, 141}, {17,
225}, {50, 194}, {18, 226}, {31, 239}, {96, 144}, {97, 145}, {31, 238}, {66,
179}, {50, 195}, {82, 163}, {97, 144}, {49, 195}, {65, 179}, {81, 163}, {17,
226}, {49, 194}, {18, 225}, {98, 145}, {50, 198}, {51, 199}, {76, 184}, {50,
199}, {65, 180}, {61, 200}, {51, 198}, {77, 184}, {81, 164}, {97, 148}, {66,
180}, {82, 164}, {98, 148}, {99, 149}, {98, 149}, {21, 237}, {51, 203}, {29,
229}, {100, 156}, {101, 157}, {20, 237}, {51, 202}, {28, 229}, {100, 157}, {20,
238}, {69, 191}, {61, 199}, {53, 207}, {52, 206}, {28, 230}, {77, 183}, {85,
175}, {98, 152}, {99, 153}, {21, 238}, {68, 191}, {53, 206}, {52, 207}, {29,
230}, {76, 183}, {84, 175}, {99, 152}, {100, 153}, {52, 202}, {52, 203}, {99,
156} }>;
(II) A more general form is to represent the graph as the orbit of {92, 124}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30)(31, 42, 53, 34, 45, 56, 37, 48, 59, 40, 51,
32, 43, 54, 35, 46, 57, 38, 49, 60, 41, 52, 33, 44, 55, 36, 47, 58, 39, 50)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 102, 113, 94, 105, 116, 97, 108, 119,
100, 111, 92, 103, 114, 95, 106, 117, 98, 109, 120, 101, 112, 93, 104, 115, 96,
107, 118, 99, 110)(121, 165, 209, 133, 177, 221, 145, 189, 233, 157, 201, 125,
169, 213, 137, 181, 225, 149, 193, 237, 161, 205, 129, 173, 217, 141, 185, 229,
153, 197)(122, 166, 210, 134, 178, 222, 146, 190, 234, 158, 202, 126, 170, 214,
138, 182, 226, 150, 194, 238, 162, 206, 130, 174, 218, 142, 186, 230, 154,
198)(123, 167, 211, 135, 179, 223, 147, 191, 235, 159, 203, 127, 171, 215, 139,
183, 227, 151, 195, 239, 163, 207, 131, 175, 219, 143, 187, 231, 155, 199)(124,
168, 212, 136, 180, 224, 148, 192, 236, 160, 204, 128, 172, 216, 140, 184, 228,
152, 196, 240, 164, 208, 132, 176, 220, 144, 188, 232, 156, 200) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (31, 91)(32, 92)(33, 93)(34, 94)(35, 95)(36, 96)(37, 97)(38, 98)(39, 99)(40,
100)(41, 101)(42, 102)(43, 103)(44, 104)(45, 105)(46, 106)(47, 107)(48, 108)(49,
109)(50, 110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58,
118)(59, 119)(60, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131,
132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147,
148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163,
164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179,
180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195,
196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211,
212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227,
228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)
c: (2, 30)(3, 29)(4, 28)(5, 27)(6, 26)(7, 25)(8, 24)(9, 23)(10, 22)(11, 21)(12,
20)(13, 19)(14, 18)(15, 17)(31, 51)(32, 50)(33, 49)(34, 48)(35, 47)(36, 46)(37,
45)(38, 44)(39, 43)(40, 42)(52, 60)(53, 59)(54, 58)(55, 57)(62, 90)(63, 89)(64,
88)(65, 87)(66, 86)(67, 85)(68, 84)(69, 83)(70, 82)(71, 81)(72, 80)(73, 79)(74,
78)(75, 77)(91, 111)(92, 110)(93, 109)(94, 108)(95, 107)(96, 106)(97, 105)(98,
104)(99, 103)(100, 102)(112, 120)(113, 119)(114, 118)(115, 117)(121, 197)(122,
198)(123, 199)(124, 200)(125, 193)(126, 194)(127, 195)(128, 196)(129, 189)(130,
190)(131, 191)(132, 192)(133, 185)(134, 186)(135, 187)(136, 188)(137, 181)(138,
182)(139, 183)(140, 184)(141, 177)(142, 178)(143, 179)(144, 180)(145, 173)(146,
174)(147, 175)(148, 176)(149, 169)(150, 170)(151, 171)(152, 172)(153, 165)(154,
166)(155, 167)(156, 168)(157, 161)(158, 162)(159, 163)(160, 164)(201, 237)(202,
238)(203, 239)(204, 240)(205, 233)(206, 234)(207, 235)(208, 236)(209, 229)(210,
230)(211, 231)(212, 232)(213, 225)(214, 226)(215, 227)(216, 228)(217, 221)(218,
222)(219, 223)(220, 224)
d: (1, 31)(2, 32)(3, 33)(4, 34)(5, 35)(6, 36)(7, 37)(8, 38)(9, 39)(10, 40)(11,
41)(12, 42)(13, 43)(14, 44)(15, 45)(16, 46)(17, 47)(18, 48)(19, 49)(20, 50)(21,
51)(22, 52)(23, 53)(24, 54)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(61,
91)(62, 92)(63, 93)(64, 94)(65, 95)(66, 96)(67, 97)(68, 98)(69, 99)(70, 100)(71,
101)(72, 102)(73, 103)(74, 104)(75, 105)(76, 106)(77, 107)(78, 108)(79, 109)(80,
110)(81, 111)(82, 112)(83, 113)(84, 114)(85, 115)(86, 116)(87, 117)(88, 118)(89,
119)(90, 120)(121, 123)(125, 167)(126, 166)(127, 165)(128, 168)(129, 211)(130,
210)(131, 209)(132, 212)(133, 135)(137, 179)(138, 178)(139, 177)(140, 180)(141,
223)(142, 222)(143, 221)(144, 224)(145, 147)(149, 191)(150, 190)(151, 189)(152,
192)(153, 235)(154, 234)(155, 233)(156, 236)(157, 159)(161, 203)(162, 202)(163,
201)(164, 204)(169, 171)(173, 215)(174, 214)(175, 213)(176, 216)(181, 183)(185,
227)(186, 226)(187, 225)(188, 228)(193, 195)(197, 239)(198, 238)(199, 237)(200,
240)(205, 207)(217, 219)(229, 231)
C4[ 240, 35 ]
240
-1 121 198 122 197
-2 121 165 122 166
-3 165 209 166 210
-4 209 133 210 134
-5 133 177 134 178
-6 177 221 178 222
-7 221 145 222 146
-8 145 189 146 190
-9 189 233 190 234
-10 233 157 234 158
-11 157 201 158 202
-12 201 125 202 126
-13 125 169 126 170
-14 169 213 170 214
-15 213 137 214 138
-16 137 181 138 182
-17 181 225 182 226
-18 225 149 226 150
-19 149 193 150 194
-20 193 237 194 238
-21 237 161 238 162
-22 161 205 162 206
-23 205 129 206 130
-24 129 173 130 174
-25 173 217 174 218
-26 217 141 218 142
-27 141 185 142 186
-28 185 229 186 230
-29 154 229 153 230
-30 154 198 153 197
-31 122 123 238 239
-32 122 123 126 127
-33 126 127 130 131
-34 134 135 130 131
-35 134 135 138 139
-36 143 138 139 142
-37 143 146 147 142
-38 146 147 150 151
-39 154 155 150 151
-40 154 155 158 159
-41 158 159 162 163
-42 166 167 162 163
-43 166 167 170 171
-44 170 171 174 175
-45 178 179 174 175
-46 178 179 182 183
-47 187 182 183 186
-48 187 190 191 186
-49 190 191 194 195
-50 198 199 194 195
-51 198 199 202 203
-52 202 203 206 207
-53 210 211 206 207
-54 210 211 214 215
-55 214 215 218 219
-56 222 223 218 219
-57 222 223 226 227
-58 231 226 227 230
-59 231 234 235 230
-60 234 235 238 239
-61 199 123 200 124
-62 123 167 124 168
-63 167 211 168 212
-64 211 135 212 136
-65 135 179 136 180
-66 179 223 180 224
-67 223 147 224 148
-68 147 191 148 192
-69 191 235 192 236
-70 235 159 236 160
-71 159 203 160 204
-72 203 127 204 128
-73 127 171 128 172
-74 171 215 172 216
-75 215 139 216 140
-76 139 183 140 184
-77 183 227 184 228
-78 227 151 228 152
-79 151 195 152 196
-80 195 239 196 240
-81 239 163 240 164
-82 163 207 164 208
-83 132 207 131 208
-84 132 176 131 175
-85 176 220 175 219
-86 143 220 144 219
-87 143 187 144 188
-88 187 231 188 232
-89 231 155 232 156
-90 155 199 156 200
-91 121 124 237 240
-92 121 124 125 128
-93 132 125 128 129
-94 132 133 136 129
-95 133 136 137 140
-96 144 137 140 141
-97 144 145 148 141
-98 145 148 149 152
-99 156 149 152 153
-100 156 157 160 153
-101 157 160 161 164
-102 165 168 161 164
-103 165 168 169 172
-104 176 169 172 173
-105 176 177 180 173
-106 177 180 181 184
-107 188 181 184 185
-108 188 189 192 185
-109 189 192 193 196
-110 200 193 196 197
-111 200 201 204 197
-112 201 204 205 208
-113 209 212 205 208
-114 209 212 213 216
-115 220 213 216 217
-116 220 221 224 217
-117 221 224 225 228
-118 232 225 228 229
-119 232 233 236 229
-120 233 236 237 240
-121 1 2 91 92
-122 1 2 31 32
-123 61 62 31 32
-124 91 92 61 62
-125 12 13 92 93
-126 33 12 13 32
-127 33 72 73 32
-128 92 93 72 73
-129 23 24 93 94
-130 33 23 34 24
-131 33 34 83 84
-132 93 83 94 84
-133 4 5 94 95
-134 34 35 4 5
-135 34 35 64 65
-136 94 95 64 65
-137 15 16 95 96
-138 35 36 15 16
-139 35 36 75 76
-140 95 96 75 76
-141 26 27 96 97
-142 36 26 37 27
-143 36 37 86 87
-144 96 86 97 87
-145 7 8 97 98
-146 37 38 7 8
-147 67 68 37 38
-148 67 68 97 98
-149 99 18 19 98
-150 38 39 18 19
-151 78 79 38 39
-152 99 78 79 98
-153 99 100 29 30
-154 39 29 40 30
-155 89 90 39 40
-156 99 89 100 90
-157 11 100 101 10
-158 11 40 41 10
-159 70 71 40 41
-160 100 101 70 71
-161 22 101 102 21
-162 22 41 42 21
-163 81 82 41 42
-164 101 102 81 82
-165 2 3 102 103
-166 2 3 42 43
-167 62 63 42 43
-168 102 103 62 63
-169 13 14 103 104
-170 44 13 14 43
-171 44 73 74 43
-172 103 104 73 74
-173 24 25 104 105
-174 44 45 24 25
-175 44 45 84 85
-176 104 105 84 85
-177 5 6 105 106
-178 45 46 5 6
-179 66 45 46 65
-180 66 105 106 65
-181 16 17 106 107
-182 46 47 16 17
-183 77 46 47 76
-184 77 106 107 76
-185 27 28 107 108
-186 47 48 27 28
-187 88 47 48 87
-188 88 107 108 87
-189 8 9 108 109
-190 48 49 8 9
-191 68 69 48 49
-192 68 69 108 109
-193 110 19 20 109
-194 49 50 19 20
-195 79 80 49 50
-196 110 79 80 109
-197 110 1 111 30
-198 1 50 51 30
-199 90 50 61 51
-200 110 111 90 61
-201 11 12 111 112
-202 11 12 51 52
-203 71 72 51 52
-204 111 112 71 72
-205 22 23 112 113
-206 22 23 52 53
-207 82 83 52 53
-208 112 113 82 83
-209 3 113 4 114
-210 3 4 53 54
-211 63 53 64 54
-212 113 114 63 64
-213 14 15 114 115
-214 55 14 15 54
-215 55 74 75 54
-216 114 115 74 75
-217 25 26 115 116
-218 55 56 25 26
-219 55 56 85 86
-220 115 116 85 86
-221 6 116 7 117
-222 56 57 6 7
-223 66 56 67 57
-224 66 67 116 117
-225 17 18 117 118
-226 57 58 17 18
-227 77 78 57 58
-228 77 78 117 118
-229 28 29 118 119
-230 58 59 28 29
-231 88 89 58 59
-232 88 89 118 119
-233 9 119 10 120
-234 59 60 9 10
-235 69 59 70 60
-236 69 70 119 120
-237 91 20 21 120
-238 60 20 31 21
-239 80 81 60 31
-240 80 91 81 120
0