[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 36 ] =
PL(MSY(4,30,11,15)).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {106, 124}, {107, 125}, {106, 125}, {107, 124}, {91, 121}, {92,
121}, {77, 127}, {76, 127}, {61, 124}, {62, 124}, {62, 123}, {61, 123}, {46,
126}, {47, 127}, {46, 127}, {47, 126}, {32, 122}, {32, 123}, {31, 123}, {31,
122}, {17, 125}, {16, 125}, {16, 126}, {17, 126}, {1, 121}, {2, 122}, {1, 122},
{2, 121}, {30, 158}, {54, 182}, {104, 232}, {105, 233}, {20, 149}, {54, 183},
{105, 232}, {20, 150}, {70, 196}, {53, 183}, {30, 157}, {71, 196}, {53, 182},
{106, 233}, {9, 141}, {71, 195}, {8, 141}, {70, 195}, {19, 150}, {8, 142}, {19,
149}, {36, 162}, {37, 163}, {89, 223}, {9, 142}, {63, 184}, {36, 163}, {37,
162}, {88, 223}, {103, 224}, {54, 190}, {63, 183}, {55, 191}, {104, 224}, {105,
225}, {16, 153}, {55, 190}, {54, 191}, {104, 225}, {16, 154}, {74, 192}, {75,
192}, {13, 129}, {67, 207}, {38, 170}, {12, 129}, {66, 207}, {38, 171}, {12,
130}, {37, 171}, {13, 130}, {37, 170}, {24, 137}, {74, 219}, {86, 199}, {24,
138}, {119, 229}, {73, 219}, {66, 208}, {52, 166}, {40, 186}, {85, 199}, {40,
187}, {119, 228}, {67, 208}, {52, 167}, {5, 145}, {120, 236}, {51, 167}, {38,
178}, {39, 179}, {4, 145}, {120, 237}, {73, 220}, {15, 154}, {38, 179}, {39,
178}, {51, 166}, {77, 216}, {4, 146}, {74, 220}, {15, 153}, {78, 216}, {5, 146},
{28, 133}, {78, 215}, {82, 203}, {105, 240}, {28, 134}, {53, 175}, {52, 174},
{77, 215}, {81, 203}, {106, 240}, {52, 175}, {53, 174}, {1, 157}, {120, 228},
{39, 187}, {23, 138}, {120, 229}, {61, 160}, {27, 134}, {39, 186}, {81, 204},
{85, 200}, {23, 137}, {27, 133}, {82, 204}, {86, 200}, {1, 158}, {18, 178},
{117, 213}, {80, 240}, {8, 169}, {117, 212}, {70, 231}, {19, 178}, {81, 240},
{8, 170}, {118, 212}, {69, 231}, {61, 159}, {19, 177}, {32, 130}, {33, 131},
{18, 177}, {118, 213}, {32, 131}, {33, 130}, {99, 192}, {29, 185}, {30, 186},
{50, 150}, {100, 192}, {101, 193}, {50, 151}, {100, 193}, {49, 151}, {29, 186},
{30, 185}, {49, 150}, {34, 138}, {47, 135}, {12, 165}, {66, 235}, {34, 139},
{47, 134}, {12, 166}, {119, 221}, {118, 220}, {65, 235}, {33, 139}, {33, 138},
{119, 220}, {118, 221}, {50, 158}, {51, 159}, {100, 200}, {101, 201}, {7, 170},
{69, 232}, {65, 236}, {11, 166}, {50, 159}, {51, 158}, {101, 200}, {7, 169},
{70, 232}, {66, 236}, {11, 165}, {102, 201}, {14, 190}, {116, 196}, {34, 146},
{35, 147}, {84, 228}, {4, 181}, {116, 197}, {15, 190}, {34, 147}, {35, 146},
{85, 228}, {104, 217}, {4, 182}, {15, 189}, {14, 189}, {3, 182}, {101, 208}, {3,
181}, {115, 197}, {48, 134}, {85, 227}, {91, 237}, {102, 208}, {103, 209}, {48,
135}, {115, 196}, {84, 227}, {91, 236}, {102, 209}, {22, 174}, {117, 205}, {116,
204}, {26, 162}, {35, 155}, {88, 224}, {23, 174}, {117, 204}, {116, 205}, {27,
162}, {35, 154}, {89, 224}, {23, 173}, {27, 161}, {22, 173}, {26, 161}, {36,
154}, {48, 142}, {49, 143}, {81, 239}, {102, 216}, {103, 217}, {36, 155}, {48,
143}, {49, 142}, {80, 239}, {103, 216}, {29, 221}, {96, 160}, {97, 161}, {28,
221}, {96, 161}, {28, 222}, {29, 222}, {17, 213}, {113, 181}, {18, 214}, {46,
234}, {46, 235}, {113, 180}, {90, 159}, {45, 235}, {114, 180}, {94, 152}, {95,
153}, {17, 214}, {114, 181}, {18, 213}, {45, 234}, {80, 151}, {95, 152}, {6,
206}, {10, 194}, {80, 152}, {96, 168}, {97, 169}, {7, 206}, {11, 194}, {97,
168}, {7, 205}, {73, 131}, {69, 143}, {11, 193}, {111, 165}, {6, 205}, {72,
131}, {68, 143}, {10, 193}, {98, 169}, {111, 164}, {72, 132}, {76, 128}, {73,
132}, {77, 128}, {93, 144}, {44, 226}, {115, 189}, {114, 188}, {45, 227}, {94,
144}, {95, 145}, {44, 227}, {115, 188}, {114, 189}, {45, 226}, {94, 145}, {2,
210}, {75, 155}, {76, 156}, {87, 135}, {88, 136}, {3, 210}, {97, 176}, {3, 209},
{65, 147}, {60, 238}, {98, 176}, {99, 177}, {2, 209}, {64, 147}, {60, 239}, {98,
177}, {13, 217}, {68, 144}, {64, 148}, {14, 218}, {92, 136}, {93, 137}, {112,
164}, {65, 148}, {69, 144}, {93, 136}, {112, 165}, {13, 218}, {76, 155}, {75,
156}, {14, 217}, {79, 152}, {94, 137}, {79, 151}, {83, 139}, {84, 140}, {60,
230}, {98, 184}, {99, 185}, {60, 231}, {91, 128}, {99, 184}, {21, 201}, {113,
173}, {59, 231}, {22, 202}, {25, 197}, {26, 198}, {92, 128}, {93, 129}, {112,
172}, {59, 230}, {92, 129}, {100, 185}, {112, 173}, {113, 172}, {21, 202}, {22,
201}, {25, 198}, {26, 197}, {83, 140}, {84, 139}, {87, 136}, {88, 135}, {42,
202}, {72, 168}, {71, 167}, {108, 140}, {109, 141}, {42, 203}, {90, 187}, {108,
141}, {109, 140}, {41, 203}, {82, 176}, {89, 187}, {41, 202}, {83, 176}, {58,
222}, {59, 223}, {58, 223}, {59, 222}, {89, 188}, {90, 188}, {67, 171}, {68,
172}, {108, 132}, {108, 133}, {40, 194}, {62, 212}, {41, 195}, {40, 195}, {63,
212}, {41, 194}, {5, 233}, {63, 211}, {58, 214}, {6, 234}, {9, 229}, {10, 230},
{58, 215}, {62, 211}, {57, 215}, {107, 133}, {5, 234}, {72, 167}, {71, 168},
{68, 171}, {67, 172}, {57, 214}, {6, 233}, {9, 230}, {10, 229}, {107, 132}, {31,
239}, {55, 199}, {43, 219}, {31, 238}, {55, 198}, {43, 218}, {86, 164}, {110,
156}, {111, 157}, {87, 164}, {110, 157}, {111, 156}, {75, 191}, {87, 163}, {74,
191}, {86, 163}, {44, 218}, {57, 207}, {56, 206}, {44, 219}, {64, 183}, {57,
206}, {56, 207}, {21, 237}, {64, 184}, {25, 225}, {42, 210}, {43, 211}, {109,
149}, {20, 237}, {24, 225}, {42, 211}, {43, 210}, {96, 153}, {109, 148}, {20,
238}, {24, 226}, {78, 180}, {90, 160}, {110, 148}, {21, 238}, {25, 226}, {79,
180}, {110, 149}, {79, 179}, {83, 175}, {78, 179}, {82, 175}, {56, 198}, {56,
199}, {95, 160} }>;
(II) A more general form is to represent the graph as the orbit of {106, 124}
under the group generated by the following permutations:
a: (2, 30)(3, 29)(4, 28)(5, 27)(6, 26)(7, 25)(8, 24)(9, 23)(10, 22)(11, 21)(12,
20)(13, 19)(14, 18)(15, 17)(31, 111)(32, 110)(33, 109)(34, 108)(35, 107)(36,
106)(37, 105)(38, 104)(39, 103)(40, 102)(41, 101)(42, 100)(43, 99)(44, 98)(45,
97)(46, 96)(47, 95)(48, 94)(49, 93)(50, 92)(51, 91)(52, 120)(53, 119)(54,
118)(55, 117)(56, 116)(57, 115)(58, 114)(59, 113)(60, 112)(61, 76)(62, 75)(63,
74)(64, 73)(65, 72)(66, 71)(67, 70)(68, 69)(77, 90)(78, 89)(79, 88)(80, 87)(81,
86)(82, 85)(83, 84)(121, 158)(122, 157)(123, 156)(124, 155)(125, 154)(126,
153)(127, 160)(128, 159)(129, 150)(130, 149)(131, 148)(132, 147)(133, 146)(134,
145)(135, 152)(136, 151)(137, 142)(138, 141)(139, 140)(143, 144)(161, 234)(162,
233)(163, 240)(164, 239)(165, 238)(166, 237)(167, 236)(168, 235)(169, 226)(170,
225)(171, 232)(172, 231)(173, 230)(174, 229)(175, 228)(176, 227)(177, 218)(178,
217)(179, 224)(180, 223)(181, 222)(182, 221)(183, 220)(184, 219)(185, 210)(186,
209)(187, 216)(188, 215)(189, 214)(190, 213)(191, 212)(192, 211)(193, 202)(194,
201)(195, 208)(196, 207)(197, 206)(198, 205)(199, 204)(200, 203) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 31)(2, 32)(3, 33)(4, 34)(5, 35)(6, 36)(7, 37)(8, 38)(9, 39)(10, 40)(11,
41)(12, 42)(13, 43)(14, 44)(15, 45)(16, 46)(17, 47)(18, 48)(19, 49)(20, 50)(21,
51)(22, 52)(23, 53)(24, 54)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(61,
91)(62, 92)(63, 93)(64, 94)(65, 95)(66, 96)(67, 97)(68, 98)(69, 99)(70, 100)(71,
101)(72, 102)(73, 103)(74, 104)(75, 105)(76, 106)(77, 107)(78, 108)(79, 109)(80,
110)(81, 111)(82, 112)(83, 113)(84, 114)(85, 115)(86, 116)(87, 117)(88, 118)(89,
119)(90, 120)(121, 123)(124, 128)(125, 127)(129, 211)(130, 210)(131, 209)(132,
216)(133, 215)(134, 214)(135, 213)(136, 212)(137, 183)(138, 182)(139, 181)(140,
180)(141, 179)(142, 178)(143, 177)(144, 184)(145, 147)(148, 152)(149, 151)(153,
235)(154, 234)(155, 233)(156, 240)(157, 239)(158, 238)(159, 237)(160, 236)(161,
207)(162, 206)(163, 205)(164, 204)(165, 203)(166, 202)(167, 201)(168, 208)(169,
171)(172, 176)(173, 175)(185, 231)(186, 230)(187, 229)(188, 228)(189, 227)(190,
226)(191, 225)(192, 232)(193, 195)(196, 200)(197, 199)(217, 219)(220, 224)(221,
223)
c: (1, 2)(3, 30)(4, 29)(5, 28)(6, 27)(7, 26)(8, 25)(9, 24)(10, 23)(11, 22)(12,
21)(13, 20)(14, 19)(15, 18)(16, 17)(31, 32)(33, 60)(34, 59)(35, 58)(36, 57)(37,
56)(38, 55)(39, 54)(40, 53)(41, 52)(42, 51)(43, 50)(44, 49)(45, 48)(46, 47)(61,
62)(63, 90)(64, 89)(65, 88)(66, 87)(67, 86)(68, 85)(69, 84)(70, 83)(71, 82)(72,
81)(73, 80)(74, 79)(75, 78)(76, 77)(91, 92)(93, 120)(94, 119)(95, 118)(96,
117)(97, 116)(98, 115)(99, 114)(100, 113)(101, 112)(102, 111)(103, 110)(104,
109)(105, 108)(106, 107)(129, 237)(130, 238)(131, 239)(132, 240)(133, 233)(134,
234)(135, 235)(136, 236)(137, 229)(138, 230)(139, 231)(140, 232)(141, 225)(142,
226)(143, 227)(144, 228)(145, 221)(146, 222)(147, 223)(148, 224)(149, 217)(150,
218)(151, 219)(152, 220)(153, 213)(154, 214)(155, 215)(156, 216)(157, 209)(158,
210)(159, 211)(160, 212)(161, 205)(162, 206)(163, 207)(164, 208)(165, 201)(166,
202)(167, 203)(168, 204)(169, 197)(170, 198)(171, 199)(172, 200)(173, 193)(174,
194)(175, 195)(176, 196)(177, 189)(178, 190)(179, 191)(180, 192)(181, 185)(182,
186)(183, 187)(184, 188)
d: (31, 91)(32, 92)(33, 93)(34, 94)(35, 95)(36, 96)(37, 97)(38, 98)(39, 99)(40,
100)(41, 101)(42, 102)(43, 103)(44, 104)(45, 105)(46, 106)(47, 107)(48, 108)(49,
109)(50, 110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58,
118)(59, 119)(60, 120)(61, 76)(62, 77)(63, 78)(64, 79)(65, 80)(66, 81)(67,
82)(68, 83)(69, 84)(70, 85)(71, 86)(72, 87)(73, 88)(74, 89)(75, 90)(121,
122)(123, 128)(124, 127)(125, 126)(129, 130)(131, 136)(132, 135)(133, 134)(137,
138)(139, 144)(140, 143)(141, 142)(145, 146)(147, 152)(148, 151)(149, 150)(153,
154)(155, 160)(156, 159)(157, 158)(161, 162)(163, 168)(164, 167)(165, 166)(169,
170)(171, 176)(172, 175)(173, 174)(177, 178)(179, 184)(180, 183)(181, 182)(185,
186)(187, 192)(188, 191)(189, 190)(193, 194)(195, 200)(196, 199)(197, 198)(201,
202)(203, 208)(204, 207)(205, 206)(209, 210)(211, 216)(212, 215)(213, 214)(217,
218)(219, 224)(220, 223)(221, 222)(225, 226)(227, 232)(228, 231)(229, 230)(233,
234)(235, 240)(236, 239)(237, 238)
C4[ 240, 36 ]
240
-1 121 122 157 158
-2 121 209 122 210
-3 209 210 181 182
-4 145 146 181 182
-5 145 233 146 234
-6 233 234 205 206
-7 169 170 205 206
-8 169 170 141 142
-9 141 229 142 230
-10 193 194 229 230
-11 165 166 193 194
-12 165 166 129 130
-13 129 217 130 218
-14 189 190 217 218
-15 154 189 190 153
-16 154 125 126 153
-17 125 213 126 214
-18 177 178 213 214
-19 177 178 149 150
-20 149 237 150 238
-21 201 202 237 238
-22 201 202 173 174
-23 137 138 173 174
-24 137 225 138 226
-25 198 225 226 197
-26 198 161 162 197
-27 133 134 161 162
-28 133 221 134 222
-29 221 222 185 186
-30 157 158 185 186
-31 122 123 238 239
-32 122 123 130 131
-33 138 139 130 131
-34 146 147 138 139
-35 154 155 146 147
-36 154 155 162 163
-37 170 171 162 163
-38 178 179 170 171
-39 187 178 179 186
-40 187 194 195 186
-41 202 203 194 195
-42 210 211 202 203
-43 210 211 218 219
-44 226 227 218 219
-45 234 235 226 227
-46 234 235 126 127
-47 134 135 126 127
-48 143 134 135 142
-49 143 150 151 142
-50 158 159 150 151
-51 166 167 158 159
-52 166 167 174 175
-53 182 183 174 175
-54 190 191 182 183
-55 198 199 190 191
-56 198 199 206 207
-57 214 215 206 207
-58 222 223 214 215
-59 231 222 223 230
-60 231 238 239 230
-61 123 124 159 160
-62 123 211 124 212
-63 211 212 183 184
-64 147 148 183 184
-65 147 235 148 236
-66 235 236 207 208
-67 171 172 207 208
-68 143 144 171 172
-69 143 231 144 232
-70 231 232 195 196
-71 167 168 195 196
-72 132 167 168 131
-73 132 220 131 219
-74 220 191 192 219
-75 155 156 191 192
-76 155 156 127 128
-77 127 215 128 216
-78 179 180 215 216
-79 179 180 151 152
-80 151 239 152 240
-81 203 204 239 240
-82 176 203 204 175
-83 176 139 140 175
-84 139 227 140 228
-85 199 200 227 228
-86 199 200 163 164
-87 135 136 163 164
-88 135 223 136 224
-89 187 188 223 224
-90 187 188 159 160
-91 121 236 237 128
-92 121 136 128 129
-93 144 136 137 129
-94 144 145 137 152
-95 145 160 152 153
-96 168 160 161 153
-97 176 168 169 161
-98 176 177 169 184
-99 177 192 184 185
-100 200 192 193 185
-101 200 201 193 208
-102 209 201 216 208
-103 209 224 216 217
-104 232 224 225 217
-105 232 233 225 240
-106 233 124 125 240
-107 132 133 124 125
-108 132 133 140 141
-109 148 149 140 141
-110 156 157 148 149
-111 165 156 157 164
-112 165 172 173 164
-113 180 181 172 173
-114 188 189 180 181
-115 188 189 196 197
-116 204 205 196 197
-117 212 213 204 205
-118 220 221 212 213
-119 220 221 228 229
-120 236 237 228 229
-121 1 2 91 92
-122 1 2 31 32
-123 61 62 31 32
-124 61 62 106 107
-125 16 17 106 107
-126 46 47 16 17
-127 77 46 47 76
-128 77 91 92 76
-129 12 13 92 93
-130 33 12 13 32
-131 33 72 73 32
-132 72 73 107 108
-133 27 28 107 108
-134 47 48 27 28
-135 88 47 48 87
-136 88 92 93 87
-137 23 24 93 94
-138 33 23 34 24
-139 33 34 83 84
-140 83 84 108 109
-141 8 9 108 109
-142 48 49 8 9
-143 68 69 48 49
-144 68 69 93 94
-145 4 5 94 95
-146 34 35 4 5
-147 34 35 64 65
-148 110 64 65 109
-149 110 19 20 109
-150 49 50 19 20
-151 79 80 49 50
-152 79 80 94 95
-153 15 16 95 96
-154 35 36 15 16
-155 35 36 75 76
-156 110 111 75 76
-157 110 1 111 30
-158 1 50 51 30
-159 90 50 61 51
-160 90 61 95 96
-161 26 27 96 97
-162 36 26 37 27
-163 36 37 86 87
-164 111 112 86 87
-165 11 12 111 112
-166 11 12 51 52
-167 71 72 51 52
-168 71 72 96 97
-169 7 8 97 98
-170 37 38 7 8
-171 67 68 37 38
-172 67 68 112 113
-173 22 23 112 113
-174 22 23 52 53
-175 82 83 52 53
-176 82 83 97 98
-177 99 18 19 98
-178 38 39 18 19
-179 78 79 38 39
-180 78 79 113 114
-181 3 113 4 114
-182 3 4 53 54
-183 63 53 64 54
-184 99 63 64 98
-185 99 100 29 30
-186 39 29 40 30
-187 89 90 39 40
-188 89 90 114 115
-189 14 15 114 115
-190 55 14 15 54
-191 55 74 75 54
-192 99 100 74 75
-193 11 100 101 10
-194 11 40 41 10
-195 70 71 40 41
-196 70 71 115 116
-197 25 26 115 116
-198 55 56 25 26
-199 55 56 85 86
-200 100 101 85 86
-201 22 101 102 21
-202 22 41 42 21
-203 81 82 41 42
-204 81 82 116 117
-205 6 116 7 117
-206 56 57 6 7
-207 66 56 67 57
-208 66 67 101 102
-209 2 3 102 103
-210 2 3 42 43
-211 62 63 42 43
-212 62 117 63 118
-213 17 18 117 118
-214 57 58 17 18
-215 77 78 57 58
-216 77 78 102 103
-217 13 14 103 104
-218 44 13 14 43
-219 44 73 74 43
-220 73 74 118 119
-221 28 29 118 119
-222 58 59 28 29
-223 88 89 58 59
-224 88 89 103 104
-225 24 25 104 105
-226 44 45 24 25
-227 44 45 84 85
-228 84 85 119 120
-229 9 119 10 120
-230 59 60 9 10
-231 69 59 70 60
-232 69 70 104 105
-233 5 6 105 106
-234 45 46 5 6
-235 66 45 46 65
-236 66 91 65 120
-237 91 20 21 120
-238 60 20 31 21
-239 80 81 60 31
-240 80 81 105 106
0