C4graphGraph forms for C4 [ 240, 45 ] = PL(MC3(6,20,1,9,11,0,1),[6^20,10^12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 45 ] = PL(MC3(6,20,1,9,11,0,1),[6^20,10^12]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {95, 127}, {80, 123}, {72, 123}, {72, 125}, {68, 127}, {54, 124}, {50, 121}, {53, 123}, {46, 126}, {42, 123}, {46, 124}, {42, 125}, {32, 124}, {26, 122}, {26, 121}, {28, 121}, {31, 122}, {22, 126}, {22, 124}, {11, 122}, {11, 121}, {13, 127}, {14, 122}, {5, 125}, {7, 127}, {2, 126}, {3, 125}, {1, 126}, {57, 185}, {64, 192}, {91, 219}, {71, 198}, {23, 149}, {74, 200}, {41, 171}, {94, 220}, {40, 171}, {85, 214}, {31, 155}, {78, 202}, {77, 201}, {79, 203}, {83, 215}, {43, 174}, {58, 191}, {47, 170}, {104, 237}, {10, 140}, {19, 149}, {24, 158}, {102, 224}, {15, 136}, {32, 167}, {38, 161}, {47, 168}, {51, 180}, {24, 144}, {55, 191}, {45, 165}, {108, 228}, {37, 172}, {92, 213}, {3, 137}, {73, 195}, {41, 162}, {80, 219}, {5, 137}, {62, 178}, {60, 176}, {33, 173}, {44, 160}, {93, 209}, {96, 236}, {97, 237}, {110, 226}, {25, 148}, {29, 144}, {82, 223}, {106, 231}, {60, 178}, {102, 232}, {34, 173}, {76, 195}, {52, 187}, {90, 213}, {105, 230}, {19, 131}, {74, 218}, {70, 214}, {68, 212}, {12, 157}, {54, 167}, {17, 128}, {20, 133}, {25, 136}, {30, 143}, {37, 180}, {113, 224}, {7, 149}, {117, 231}, {27, 136}, {119, 228}, {99, 240}, {112, 227}, {12, 152}, {118, 226}, {57, 173}, {33, 181}, {14, 155}, {38, 179}, {52, 161}, {11, 157}, {72, 222}, {27, 140}, {78, 217}, {6, 158}, {120, 224}, {85, 205}, {4, 157}, {69, 220}, {66, 219}, {89, 192}, {91, 194}, {17, 139}, {77, 215}, {76, 214}, {65, 219}, {62, 164}, {22, 140}, {31, 133}, {90, 192}, {46, 181}, {115, 232}, {8, 148}, {15, 147}, {35, 191}, {45, 177}, {89, 197}, {1, 156}, {18, 143}, {29, 128}, {30, 131}, {38, 187}, {86, 203}, {88, 197}, {2, 156}, {6, 152}, {40, 183}, {73, 214}, {67, 220}, {50, 173}, {3, 163}, {16, 176}, {107, 203}, {22, 183}, {67, 226}, {101, 196}, {23, 181}, {54, 148}, {44, 142}, {18, 177}, {34, 129}, {48, 147}, {114, 209}, {10, 174}, {75, 239}, {69, 225}, {33, 133}, {41, 141}, {102, 194}, {36, 129}, {116, 209}, {65, 228}, {61, 152}, {104, 205}, {110, 203}, {58, 156}, {117, 211}, {98, 196}, {13, 170}, {116, 211}, {64, 231}, {47, 136}, {53, 146}, {109, 202}, {55, 159}, {70, 238}, {1, 168}, {58, 147}, {10, 163}, {42, 131}, {9, 163}, {23, 189}, {51, 153}, {111, 197}, {99, 200}, {4, 168}, {60, 144}, {28, 176}, {3, 174}, {7, 170}, {48, 157}, {100, 201}, {7, 169}, {66, 236}, {29, 178}, {67, 236}, {30, 177}, {36, 139}, {97, 206}, {18, 162}, {57, 137}, {21, 165}, {88, 232}, {105, 217}, {112, 192}, {49, 128}, {120, 201}, {87, 230}, {33, 147}, {84, 230}, {103, 213}, {112, 194}, {25, 170}, {35, 144}, {50, 129}, {81, 226}, {100, 215}, {56, 140}, {92, 232}, {12, 185}, {63, 138}, {102, 211}, {113, 196}, {11, 189}, {116, 194}, {45, 155}, {51, 132}, {5, 189}, {88, 224}, {107, 211}, {109, 213}, {4, 189}, {73, 240}, {55, 142}, {18, 171}, {26, 163}, {52, 141}, {13, 183}, {15, 181}, {19, 169}, {89, 227}, {46, 149}, {59, 128}, {82, 233}, {86, 237}, {93, 230}, {98, 217}, {114, 201}, {20, 168}, {118, 202}, {61, 129}, {57, 133}, {37, 153}, {10, 183}, {77, 240}, {39, 154}, {81, 236}, {83, 238}, {90, 231}, {108, 209}, {95, 225}, {6, 185}, {35, 156}, {43, 148}, {24, 216}, {111, 175}, {19, 210}, {67, 130}, {32, 225}, {30, 220}, {38, 228}, {80, 146}, {27, 216}, {28, 223}, {85, 150}, {39, 227}, {43, 239}, {100, 160}, {2, 199}, {115, 182}, {47, 234}, {9, 207}, {69, 131}, {20, 210}, {92, 154}, {6, 193}, {34, 229}, {96, 167}, {9, 193}, {39, 239}, {110, 166}, {5, 204}, {68, 141}, {44, 229}, {96, 169}, {32, 234}, {101, 175}, {13, 198}, {27, 208}, {37, 238}, {83, 152}, {90, 145}, {94, 146}, {118, 186}, {109, 161}, {2, 207}, {31, 210}, {9, 199}, {62, 240}, {106, 164}, {8, 199}, {16, 223}, {36, 235}, {14, 222}, {75, 155}, {70, 150}, {29, 205}, {98, 178}, {56, 233}, {117, 164}, {115, 162}, {58, 235}, {87, 134}, {55, 229}, {63, 237}, {60, 238}, {106, 184}, {16, 195}, {76, 159}, {85, 134}, {28, 200}, {120, 172}, {89, 141}, {91, 143}, {110, 186}, {8, 222}, {12, 218}, {53, 227}, {81, 135}, {64, 151}, {118, 161}, {73, 158}, {99, 180}, {107, 188}, {111, 184}, {78, 150}, {119, 175}, {79, 151}, {100, 188}, {4, 221}, {21, 204}, {24, 193}, {93, 132}, {103, 190}, {53, 239}, {23, 204}, {26, 193}, {48, 235}, {82, 137}, {96, 187}, {1, 221}, {17, 205}, {86, 138}, {94, 130}, {71, 154}, {113, 172}, {25, 199}, {59, 229}, {15, 208}, {16, 207}, {84, 139}, {56, 216}, {71, 167}, {88, 184}, {103, 135}, {113, 145}, {8, 233}, {39, 198}, {45, 204}, {49, 208}, {95, 190}, {115, 146}, {54, 212}, {105, 139}, {72, 171}, {83, 176}, {101, 134}, {75, 174}, {97, 132}, {114, 151}, {59, 221}, {63, 217}, {104, 142}, {108, 138}, {14, 233}, {66, 165}, {65, 166}, {56, 223}, {93, 186}, {84, 188}, {94, 182}, {111, 135}, {77, 164}, {79, 166}, {36, 206}, {74, 160}, {70, 172}, {61, 215}, {48, 218}, {86, 188}, {59, 208}, {66, 169}, {82, 185}, {95, 179}, {117, 153}, {87, 186}, {40, 198}, {104, 134}, {108, 130}, {81, 190}, {120, 151}, {97, 142}, {119, 135}, {52, 197}, {49, 195}, {65, 179}, {107, 153}, {61, 206}, {76, 191}, {21, 225}, {84, 160}, {101, 145}, {63, 202}, {80, 165}, {40, 222}, {116, 130}, {78, 184}, {69, 179}, {64, 182}, {44, 218}, {105, 159}, {114, 132}, {42, 210}, {87, 175}, {79, 182}, {17, 235}, {75, 177}, {68, 190}, {62, 196}, {50, 200}, {35, 216}, {71, 187}, {106, 150}, {109, 145}, {41, 212}, {119, 138}, {51, 206}, {91, 166}, {98, 159}, {99, 158}, {103, 154}, {20, 234}, {74, 180}, {49, 207}, {92, 162}, {21, 234}, {34, 221}, {43, 212}, {112, 143} }>;

(II) A more general form is to represent the graph as the orbit of {95, 127} under the group generated by the following permutations:

a: (1, 3, 7, 18, 38, 64, 87, 37, 55, 6, 15, 14, 32, 53, 81, 102, 63, 77, 17, 28)(2, 5, 13, 30, 52, 79, 101, 51, 76, 12, 27, 31, 54, 80, 103, 116, 78, 100, 29, 50)(4, 10, 19, 41, 65, 90, 93, 70, 44, 24, 33, 8, 21, 39, 67, 88, 86, 62, 36, 16)(9, 23, 40, 69, 89, 110, 113, 97, 73, 48, 56, 20, 43, 66, 92, 108, 106, 84, 60, 34)(11, 22, 42, 68, 91, 109, 114, 85, 74, 35, 57, 25, 45, 71, 94, 111, 107, 98, 61, 49)(26, 46, 72, 95, 112, 118, 120, 104, 99, 58, 82, 47, 75, 96, 115, 119, 117, 105, 83, 59)(121, 126, 125, 127, 143, 161, 151, 134, 180, 191, 185, 136, 155, 167, 146, 135, 211, 217, 215, 128)(122, 124, 123, 190, 194, 202, 201, 205, 200, 156, 137, 170, 177, 187, 182, 175, 153, 159, 152, 208)(129, 207, 189, 183, 131, 141, 166, 145, 132, 214, 218, 216, 133, 148, 165, 154, 130, 184, 188, 178)(138, 164, 139, 176, 221, 163, 149, 171, 179, 192, 186, 172, 142, 158, 147, 233, 234, 239, 236, 232)(140, 210, 212, 219, 213, 209, 150, 160, 144, 173, 199, 204, 198, 220, 197, 203, 196, 206, 195, 157)(162, 228, 231, 230, 238, 229, 193, 181, 222, 225, 227, 226, 224, 237, 240, 235, 223, 168, 174, 169)
b: (2, 4)(3, 14)(5, 8)(6, 28)(9, 11)(10, 31)(12, 16)(13, 19)(18, 53)(20, 22)(21, 54)(23, 25)(24, 50)(27, 33)(29, 36)(30, 39)(34, 35)(37, 77)(40, 42)(41, 80)(43, 45)(44, 76)(46, 47)(48, 49)(51, 62)(52, 65)(56, 57)(58, 59)(60, 61)(64, 102)(66, 68)(67, 103)(69, 71)(70, 100)(73, 74)(78, 86)(79, 88)(84, 85)(89, 91)(90, 116)(92, 94)(93, 101)(95, 96)(97, 98)(104, 105)(106, 107)(108, 109)(110, 111)(113, 114)(118, 119)(121, 193)(122, 163)(123, 171)(124, 234)(125, 222)(126, 168)(127, 169)(128, 235)(129, 144)(130, 213)(131, 198)(132, 196)(133, 140)(134, 230)(135, 226)(136, 181)(137, 233)(138, 202)(139, 205)(141, 219)(142, 159)(143, 227)(145, 209)(146, 162)(147, 208)(148, 204)(149, 170)(150, 188)(151, 224)(152, 176)(153, 164)(154, 220)(155, 174)(156, 221)(157, 207)(158, 200)(160, 214)(161, 228)(165, 212)(166, 197)(167, 225)(172, 201)(173, 216)(175, 186)(177, 239)(178, 206)(179, 187)(180, 240)(182, 232)(183, 210)(184, 203)(185, 223)(189, 199)(190, 236)(191, 229)(192, 194)(195, 218)(211, 231)(215, 238)(217, 237)
c: (2, 4)(3, 28)(5, 16)(6, 14)(7, 17)(8, 12)(9, 11)(10, 50)(13, 36)(18, 77)(19, 29)(20, 35)(21, 76)(22, 34)(23, 49)(24, 31)(25, 48)(27, 33)(30, 62)(32, 55)(37, 53)(38, 63)(39, 51)(40, 61)(41, 100)(42, 60)(43, 74)(44, 54)(45, 73)(46, 59)(47, 58)(52, 86)(56, 57)(64, 102)(65, 78)(66, 85)(67, 101)(68, 84)(69, 98)(70, 80)(71, 97)(72, 83)(75, 99)(79, 88)(81, 87)(89, 107)(90, 116)(91, 106)(92, 114)(93, 103)(94, 113)(95, 105)(96, 104)(108, 109)(110, 111)(112, 117)(115, 120)(118, 119)(121, 163)(122, 193)(123, 238)(124, 229)(125, 176)(126, 221)(127, 139)(128, 149)(129, 183)(130, 145)(131, 178)(132, 154)(133, 216)(134, 236)(135, 186)(136, 147)(137, 223)(138, 161)(140, 173)(141, 188)(142, 167)(143, 164)(144, 210)(146, 172)(148, 218)(150, 219)(151, 232)(152, 222)(153, 227)(155, 158)(156, 168)(157, 199)(159, 225)(160, 212)(162, 201)(165, 214)(166, 184)(169, 205)(170, 235)(171, 215)(174, 200)(175, 226)(177, 240)(179, 217)(180, 239)(181, 208)(182, 224)(185, 233)(187, 237)(189, 207)(190, 230)(191, 234)(192, 211)(194, 231)(195, 204)(196, 220)(197, 203)(198, 206)(202, 228)(209, 213)
d: (1, 2)(3, 5)(4, 9)(6, 12)(7, 13)(8, 20)(10, 23)(11, 26)(14, 31)(15, 27)(16, 34)(17, 29)(18, 30)(19, 40)(21, 43)(22, 46)(24, 48)(25, 47)(28, 50)(32, 54)(33, 56)(35, 58)(36, 60)(37, 51)(38, 52)(39, 66)(41, 69)(42, 72)(44, 73)(45, 75)(49, 59)(53, 80)(55, 76)(57, 82)(61, 83)(62, 84)(63, 78)(64, 79)(65, 89)(67, 92)(68, 95)(70, 97)(71, 96)(74, 99)(77, 100)(81, 103)(85, 104)(86, 106)(87, 101)(88, 108)(90, 110)(91, 112)(93, 113)(94, 115)(98, 105)(102, 116)(107, 117)(109, 118)(111, 119)(114, 120)(129, 176)(130, 232)(131, 171)(132, 172)(133, 233)(138, 184)(139, 178)(140, 181)(141, 179)(142, 214)(144, 235)(145, 186)(147, 216)(148, 234)(149, 183)(150, 237)(154, 236)(157, 193)(158, 218)(160, 240)(162, 220)(163, 189)(164, 188)(165, 239)(166, 192)(168, 199)(169, 198)(173, 223)(174, 204)(195, 229)(196, 230)(197, 228)(203, 231)(206, 238)(207, 221)(209, 224)(210, 222)(212, 225)(213, 226)(219, 227)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 45 ]
240
-1 221 156 168 126
-2 199 156 126 207
-3 125 137 163 174
-4 221 189 157 168
-5 189 125 137 204
-6 158 193 152 185
-7 169 170 127 149
-8 199 222 233 148
-9 199 193 163 207
-10 183 140 163 174
-11 121 122 189 157
-12 157 152 185 218
-13 198 170 127 183
-14 122 155 222 233
-15 136 147 181 208
-16 176 223 195 207
-17 235 128 139 205
-18 143 177 171 162
-19 210 169 149 131
-20 133 210 168 234
-21 165 234 225 204
-22 124 126 183 140
-23 189 181 149 204
-24 144 158 193 216
-25 199 136 148 170
-26 121 122 193 163
-27 136 216 140 208
-28 121 176 200 223
-29 144 178 128 205
-30 143 220 177 131
-31 155 122 210 133
-32 167 124 234 225
-33 133 147 181 173
-34 221 129 173 229
-35 144 156 191 216
-36 235 139 129 206
-37 180 172 238 153
-38 187 179 161 228
-39 154 198 227 239
-40 198 222 171 183
-41 212 171 162 141
-42 210 123 125 131
-43 212 148 239 174
-44 160 218 229 142
-45 165 155 177 204
-46 124 126 181 149
-47 168 234 136 170
-48 157 147 235 218
-49 128 195 207 208
-50 121 200 129 173
-51 132 180 206 153
-52 187 161 141 197
-53 123 146 227 239
-54 167 124 212 148
-55 191 159 229 142
-56 233 223 216 140
-57 133 137 173 185
-58 156 147 191 235
-59 221 128 229 208
-60 176 144 178 238
-61 215 129 206 152
-62 178 196 240 164
-63 202 138 237 217
-64 231 192 182 151
-65 166 179 228 219
-66 165 169 236 219
-67 220 236 226 130
-68 190 212 127 141
-69 220 179 225 131
-70 214 150 172 238
-71 154 187 198 167
-72 123 222 125 171
-73 158 214 195 240
-74 200 180 160 218
-75 155 177 239 174
-76 191 159 214 195
-77 201 215 240 164
-78 202 150 184 217
-79 166 203 182 151
-80 165 123 146 219
-81 135 190 236 226
-82 233 223 137 185
-83 176 215 238 152
-84 188 160 139 230
-85 134 214 150 205
-86 188 203 138 237
-87 134 175 186 230
-88 232 224 184 197
-89 192 227 141 197
-90 231 145 213 192
-91 143 166 194 219
-92 154 232 213 162
-93 132 209 186 230
-94 220 146 182 130
-95 179 190 225 127
-96 187 167 169 236
-97 132 237 206 142
-98 178 159 217 196
-99 200 158 180 240
-100 188 201 160 215
-101 134 145 196 175
-102 232 211 224 194
-103 154 135 190 213
-104 134 237 205 142
-105 159 139 217 230
-106 231 150 184 164
-107 188 211 203 153
-108 209 138 228 130
-109 145 202 213 161
-110 166 203 226 186
-111 135 184 175 197
-112 143 192 194 227
-113 145 224 172 196
-114 132 209 201 151
-115 232 146 182 162
-116 209 211 194 130
-117 231 211 153 164
-118 202 226 161 186
-119 135 138 228 175
-120 201 224 172 151
-121 11 26 28 50
-122 11 14 26 31
-123 80 72 42 53
-124 22 46 32 54
-125 3 5 72 42
-126 22 1 2 46
-127 13 68 7 95
-128 59 49 17 29
-129 34 36 50 61
-130 67 94 116 108
-131 69 19 30 42
-132 114 93 51 97
-133 33 57 20 31
-134 101 104 85 87
-135 111 81 103 119
-136 25 47 15 27
-137 57 3 5 82
-138 63 86 108 119
-139 36 17 105 84
-140 22 56 27 10
-141 89 68 41 52
-142 44 55 104 97
-143 112 91 18 30
-144 24 35 60 29
-145 90 101 113 109
-146 80 115 94 53
-147 33 58 15 48
-148 25 8 43 54
-149 23 46 7 19
-150 78 70 106 85
-151 79 114 64 120
-152 12 6 61 83
-153 37 51 117 107
-154 92 103 71 39
-155 45 14 31 75
-156 1 2 35 58
-157 11 12 4 48
-158 99 24 6 73
-159 55 105 76 98
-160 44 100 84 74
-161 38 52 118 109
-162 92 115 18 41
-163 3 26 9 10
-164 77 62 106 117
-165 66 45 80 21
-166 110 79 91 65
-167 71 96 32 54
-168 1 47 4 20
-169 66 7 19 96
-170 13 25 47 7
-171 72 18 40 41
-172 113 37 70 120
-173 33 34 57 50
-174 3 75 10 43
-175 111 101 119 87
-176 16 60 28 83
-177 45 18 30 75
-178 60 29 62 98
-179 69 38 95 65
-180 99 37 51 74
-181 33 23 46 15
-182 79 115 94 64
-183 22 13 40 10
-184 88 78 111 106
-185 12 57 82 6
-186 110 93 118 87
-187 38 71 52 96
-188 100 84 107 86
-189 11 23 4 5
-190 68 81 103 95
-191 55 35 58 76
-192 89 90 112 64
-193 24 26 6 9
-194 112 91 102 116
-195 16 49 73 76
-196 101 113 62 98
-197 88 89 111 52
-198 13 71 39 40
-199 2 25 8 9
-200 99 28 50 74
-201 77 100 114 120
-202 78 63 118 109
-203 110 79 107 86
-204 23 45 5 21
-205 104 17 29 85
-206 36 61 51 97
-207 2 16 49 9
-208 15 59 27 49
-209 114 93 116 108
-210 19 20 31 42
-211 102 116 117 107
-212 68 41 43 54
-213 90 92 103 109
-214 70 73 85 76
-215 77 100 61 83
-216 56 24 35 27
-217 78 105 63 98
-218 44 12 48 74
-219 66 80 91 65
-220 67 69 94 30
-221 1 34 4 59
-222 14 72 40 8
-223 56 16 82 28
-224 88 102 113 120
-225 69 95 21 32
-226 110 67 81 118
-227 89 112 39 53
-228 38 108 119 65
-229 44 55 34 59
-230 93 105 84 87
-231 90 106 117 64
-232 88 102 92 115
-233 56 14 82 8
-234 47 20 21 32
-235 36 58 48 17
-236 66 67 81 96
-237 104 63 86 97
-238 37 70 60 83
-239 39 53 75 43
-240 77 99 62 73
0

**************