[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 46 ] =
PL(MC3(8,15,1,4,7,10,1),[10^12,24^5]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {110, 125}, {110, 122}, {100, 125}, {102, 127}, {96, 124}, {96,
126}, {100, 122}, {70, 126}, {70, 124}, {71, 123}, {65, 127}, {71, 121}, {48,
124}, {40, 124}, {34, 123}, {35, 121}, {34, 121}, {17, 121}, {16, 122}, {21,
122}, {14, 123}, {5, 125}, {2, 126}, {7, 123}, {2, 127}, {1, 127}, {3, 125}, {1,
126}, {80, 208}, {88, 216}, {91, 219}, {36, 165}, {72, 201}, {42, 171}, {43,
169}, {76, 206}, {74, 200}, {48, 178}, {87, 213}, {63, 188}, {73, 202}, {66,
193}, {81, 210}, {88, 220}, {50, 183}, {69, 192}, {79, 202}, {6, 128}, {80,
214}, {96, 230}, {35, 164}, {36, 163}, {39, 160}, {89, 222}, {28, 148}, {51,
187}, {62, 183}, {74, 195}, {90, 211}, {105, 224}, {3, 137}, {28, 150}, {78,
196}, {28, 151}, {63, 180}, {37, 174}, {48, 187}, {5, 137}, {53, 185}, {11,
135}, {26, 150}, {10, 135}, {13, 128}, {49, 188}, {51, 190}, {91, 214}, {92,
209}, {111, 226}, {26, 148}, {68, 202}, {29, 147}, {32, 174}, {48, 190}, {77,
195}, {46, 161}, {12, 156}, {68, 212}, {84, 196}, {85, 197}, {94, 206}, {6,
151}, {56, 169}, {47, 188}, {74, 217}, {84, 199}, {77, 217}, {13, 155}, {75,
221}, {71, 209}, {46, 184}, {4, 147}, {19, 132}, {53, 162}, {82, 197}, {4, 156},
{4, 157}, {59, 162}, {56, 161}, {20, 141}, {80, 201}, {82, 203}, {8, 146}, {61,
167}, {15, 149}, {27, 129}, {40, 178}, {81, 203}, {45, 182}, {52, 175}, {1,
157}, {10, 150}, {8, 149}, {15, 146}, {22, 139}, {95, 194}, {18, 140}, {72,
214}, {24, 134}, {39, 185}, {12, 147}, {70, 217}, {30, 129}, {79, 208}, {42,
138}, {11, 170}, {46, 143}, {49, 144}, {53, 148}, {14, 172}, {119, 213}, {75,
233}, {63, 157}, {15, 173}, {20, 182}, {111, 205}, {57, 154}, {71, 228}, {27,
191}, {107, 207}, {43, 142}, {70, 227}, {33, 135}, {65, 231}, {58, 156}, {103,
193}, {109, 203}, {32, 135}, {75, 236}, {36, 140}, {88, 240}, {3, 170}, {117,
220}, {50, 155}, {5, 175}, {75, 225}, {16, 186}, {37, 143}, {99, 201}, {26,
177}, {64, 235}, {55, 156}, {38, 141}, {52, 159}, {24, 180}, {67, 239}, {64,
236}, {39, 139}, {47, 131}, {106, 198}, {30, 179}, {117, 216}, {54, 155}, {50,
159}, {51, 158}, {98, 204}, {9, 166}, {45, 130}, {97, 206}, {41, 153}, {120,
200}, {42, 154}, {87, 231}, {92, 236}, {4, 181}, {116, 197}, {19, 162}, {22,
167}, {91, 234}, {27, 169}, {57, 139}, {44, 158}, {45, 159}, {9, 186}, {83,
224}, {88, 235}, {113, 194}, {1, 181}, {115, 199}, {114, 198}, {27, 175}, {44,
152}, {17, 164}, {24, 173}, {25, 172}, {91, 238}, {92, 233}, {107, 222}, {110,
219}, {6, 176}, {56, 142}, {11, 189}, {22, 160}, {32, 150}, {52, 130}, {89,
239}, {18, 165}, {54, 129}, {85, 226}, {96, 215}, {16, 168}, {41, 145}, {92,
228}, {93, 229}, {104, 208}, {110, 214}, {113, 201}, {31, 166}, {63, 134}, {87,
238}, {100, 221}, {5, 191}, {117, 207}, {13, 183}, {8, 179}, {61, 134}, {44,
144}, {50, 142}, {81, 237}, {108, 208}, {112, 204}, {13, 176}, {19, 174}, {21,
168}, {87, 234}, {104, 213}, {112, 205}, {3, 189}, {38, 152}, {95, 225}, {59,
132}, {119, 200}, {109, 210}, {14, 207}, {99, 162}, {33, 227}, {103, 165}, {111,
173}, {66, 129}, {120, 187}, {73, 138}, {90, 153}, {112, 179}, {39, 227}, {20,
209}, {77, 136}, {85, 144}, {21, 211}, {54, 240}, {102, 160}, {28, 219}, {68,
131}, {86, 145}, {7, 207}, {41, 225}, {107, 163}, {9, 192}, {76, 133}, {74,
131}, {99, 170}, {109, 164}, {34, 232}, {31, 212}, {79, 132}, {83, 152}, {60,
240}, {118, 186}, {69, 137}, {78, 130}, {105, 165}, {106, 166}, {102, 171}, {18,
220}, {119, 185}, {14, 193}, {116, 187}, {114, 189}, {17, 222}, {23, 216}, {29,
210}, {33, 238}, {40, 231}, {81, 158}, {16, 192}, {67, 147}, {55, 230}, {72,
153}, {98, 179}, {103, 182}, {104, 185}, {61, 239}, {23, 196}, {116, 167}, {73,
154}, {93, 137}, {97, 181}, {7, 210}, {10, 223}, {18, 199}, {19, 198}, {31,
202}, {52, 225}, {90, 143}, {2, 212}, {53, 227}, {12, 218}, {83, 133}, {84,
130}, {108, 186}, {58, 237}, {115, 164}, {62, 233}, {60, 235}, {82, 133}, {106,
189}, {25, 193}, {58, 226}, {80, 136}, {102, 190}, {20, 205}, {72, 145}, {60,
229}, {101, 188}, {55, 237}, {114, 168}, {23, 204}, {61, 230}, {113, 170}, {2,
223}, {56, 229}, {6, 219}, {94, 131}, {10, 212}, {51, 237}, {89, 134}, {120,
167}, {115, 172}, {95, 128}, {32, 192}, {117, 149}, {55, 215}, {104, 136}, {109,
141}, {65, 160}, {118, 151}, {106, 136}, {9, 234}, {37, 198}, {111, 140}, {114,
145}, {12, 232}, {59, 223}, {58, 222}, {42, 206}, {11, 238}, {49, 215}, {57,
223}, {7, 224}, {76, 171}, {15, 232}, {37, 194}, {47, 200}, {83, 180}, {67,
171}, {108, 132}, {86, 191}, {38, 205}, {69, 174}, {66, 169}, {54, 221}, {77,
166}, {94, 181}, {8, 228}, {43, 199}, {46, 194}, {94, 178}, {98, 142}, {62,
211}, {90, 183}, {93, 176}, {30, 240}, {86, 184}, {101, 139}, {35, 204}, {118,
153}, {60, 211}, {36, 203}, {78, 161}, {21, 229}, {65, 177}, {22, 230}, {24,
232}, {95, 175}, {82, 163}, {116, 133}, {97, 144}, {105, 152}, {113, 128}, {25,
235}, {120, 138}, {29, 239}, {17, 226}, {41, 221}, {66, 182}, {49, 197}, {25,
236}, {69, 176}, {31, 234}, {103, 146}, {44, 218}, {68, 178}, {78, 184}, {43,
220}, {99, 148}, {33, 217}, {76, 180}, {73, 177}, {64, 184}, {59, 195}, {34,
218}, {47, 215}, {84, 172}, {85, 173}, {101, 157}, {118, 143}, {30, 228}, {62,
196}, {57, 195}, {89, 163}, {35, 216}, {105, 146}, {108, 151}, {38, 218}, {45,
209}, {93, 161}, {112, 140}, {26, 231}, {119, 138}, {67, 190}, {29, 224}, {40,
213}, {98, 159}, {23, 233}, {115, 141}, {79, 177}, {86, 168}, {107, 149}, {64,
191}, {97, 158}, {100, 155}, {101, 154} }>;
(II) A more general form is to represent the graph as the orbit of {110, 125}
under the group generated by the following permutations:
a: (3, 6)(5, 13)(7, 17)(8, 20)(9, 19)(11, 28)(14, 35)(15, 38)(16, 37)(21,
46)(22, 48)(23, 25)(24, 44)(26, 33)(27, 50)(29, 58)(30, 45)(31, 59)(39, 40)(42,
47)(49, 76)(51, 61)(52, 54)(53, 87)(55, 67)(57, 68)(60, 78)(62, 64)(63, 97)(65,
70)(66, 98)(73, 74)(77, 79)(81, 89)(83, 85)(84, 88)(86, 90)(91, 99)(94, 101)(95,
100)(96, 102)(103, 112)(105, 111)(106, 108)(107, 109)(110, 113)(114, 118)(115,
117)(121, 123)(122, 194)(124, 160)(125, 128)(126, 127)(129, 159)(130, 240)(131,
154)(132, 166)(133, 197)(134, 158)(135, 150)(136, 208)(137, 176)(138, 200)(139,
178)(140, 165)(141, 149)(142, 169)(143, 168)(144, 180)(145, 153)(146, 205)(147,
156)(148, 238)(151, 189)(152, 173)(155, 175)(157, 181)(161, 229)(162, 234)(163,
203)(164, 207)(167, 187)(170, 219)(171, 215)(172, 216)(174, 192)(177, 217)(179,
182)(183, 191)(184, 211)(185, 213)(186, 198)(188, 206)(190, 230)(193, 204)(195,
202)(196, 235)(199, 220)(201, 214)(209, 228)(210, 222)(212, 223)(218, 232)(221,
225)(224, 226)(227, 231)(233, 236)(237, 239) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 7)(4, 10)(5, 14)(6, 17)(8, 21)(9, 24)(11, 29)(12, 32)(13, 35)(15,
16)(18, 41)(19, 44)(20, 46)(22, 40)(23, 50)(25, 27)(26, 55)(28, 58)(30, 60)(31,
63)(33, 67)(34, 69)(36, 72)(37, 38)(39, 48)(42, 74)(43, 75)(45, 78)(47, 73)(49,
79)(51, 53)(52, 84)(54, 88)(56, 92)(57, 94)(59, 97)(61, 87)(62, 98)(64, 66)(65,
96)(68, 101)(70, 102)(71, 93)(76, 77)(80, 82)(81, 99)(83, 106)(85, 108)(86,
103)(89, 91)(90, 112)(95, 115)(100, 117)(104, 116)(105, 114)(107, 110)(109,
113)(111, 118)(119, 120)(121, 176)(122, 149)(123, 137)(124, 160)(125, 207)(126,
127)(128, 164)(129, 235)(131, 154)(132, 144)(133, 136)(134, 234)(135, 147)(138,
200)(139, 178)(140, 153)(141, 194)(142, 233)(143, 205)(145, 165)(146, 168)(148,
237)(150, 156)(151, 226)(152, 198)(155, 216)(157, 212)(158, 162)(159, 196)(161,
209)(163, 214)(166, 180)(167, 213)(169, 236)(170, 210)(171, 217)(172, 175)(173,
186)(174, 218)(177, 215)(179, 211)(181, 223)(182, 184)(183, 204)(185, 187)(188,
202)(189, 224)(190, 227)(191, 193)(192, 232)(195, 206)(197, 208)(199, 225)(201,
203)(219, 222)(220, 221)(228, 229)(230, 231)(238, 239)
c: (2, 4)(3, 8, 6, 20)(5, 30, 13, 45)(7, 9, 17, 19)(10, 12)(11, 15, 28, 38)(14,
16, 35, 37)(18, 72)(21, 23, 46, 25)(22, 42, 48, 47)(24, 26, 44, 33)(27, 54, 50,
52)(29, 31, 58, 59)(32, 34)(36, 80)(39, 76, 40, 49)(41, 43)(51, 74, 61, 73)(53,
83, 87, 85)(55, 57, 67, 68)(56, 75)(60, 62, 78, 64)(63, 65, 97, 70)(66, 100, 98,
95)(69, 71)(77, 89, 79, 81)(82, 104)(84, 86, 88, 90)(91, 111, 99, 105)(92,
93)(94, 96, 101, 102)(103, 110, 112, 113)(106, 107, 108, 109)(114, 117, 118,
115)(116, 119)(121, 174, 123, 192)(122, 204, 194, 193)(124, 188, 160, 206)(125,
179, 128, 182)(126, 157, 127, 181)(129, 155, 159, 175)(130, 191, 240, 183)(131,
230, 154, 190)(132, 210, 166, 222)(133, 213, 197, 185)(134, 177, 158, 217)(135,
232, 150, 218)(136, 163, 208, 203)(137, 228, 176, 209)(138, 187, 200, 167)(139,
171, 178, 215)(140, 201, 165, 214)(141, 189, 149, 151)(142, 225, 169, 221)(143,
172, 168, 216)(144, 227, 180, 231)(145, 220, 153, 199)(146, 219, 205, 170)(147,
212, 156, 223)(148, 152, 238, 173)(161, 236, 229, 233)(162, 224, 234, 226)(164,
198, 207, 186)(184, 235, 211, 196)(195, 239, 202, 237)
d: (1, 3, 8, 22, 6, 18, 42, 37, 20, 47, 72, 35, 48, 16, 14)(2, 5, 15, 39, 13,
36, 73, 46, 38, 74, 41, 17, 40, 21, 7)(4, 11, 30, 61, 28, 43, 76, 19, 45, 49,
80, 23, 51, 9, 25)(10, 27, 24, 53, 50, 82, 79, 78, 44, 77, 75, 58, 87, 60,
29)(12, 33, 54, 89, 26, 56, 83, 59, 52, 85, 104, 62, 81, 31, 64)(32, 66, 63, 99,
98, 116, 108, 84, 97, 106, 92, 55, 91, 88, 67)(34, 70, 100, 107, 65, 93, 105,
57, 95, 111, 119, 90, 109, 68, 86)(69, 103, 101, 113, 112, 120, 118, 115, 94,
114, 71, 96, 110, 117, 102)(121, 124, 122, 207, 127, 137, 146, 139, 128, 140,
138, 143, 141, 131, 145)(123, 126, 125, 149, 160, 176, 165, 154, 194, 205, 200,
153, 164, 178, 168)(129, 134, 148, 142, 133, 132, 130, 144, 136, 233, 237, 234,
235, 147, 135)(150, 169, 180, 162, 159, 197, 208, 196, 158, 166, 236, 156, 238,
240, 239)(151, 199, 206, 198, 209, 215, 214, 216, 190, 192, 193, 157, 170, 179,
167)(152, 195, 225, 226, 213, 211, 210, 212, 191, 232, 227, 155, 163, 177,
161)(171, 174, 182, 188, 201, 204, 187, 186, 172, 181, 189, 228, 230, 219,
220)(173, 185, 183, 203, 202, 184, 218, 217, 221, 222, 231, 229, 224, 223,
175)
C4[ 240, 46 ]
240
-1 157 126 181 127
-2 212 223 126 127
-3 189 125 137 170
-4 156 157 147 181
-5 125 191 137 175
-6 176 128 151 219
-7 210 123 224 207
-8 146 179 149 228
-9 166 234 192 186
-10 135 212 223 150
-11 189 135 170 238
-12 232 156 147 218
-13 176 155 128 183
-14 123 193 172 207
-15 232 146 149 173
-16 122 168 192 186
-17 121 222 226 164
-18 165 220 199 140
-19 132 198 162 174
-20 209 182 205 141
-21 122 211 168 229
-22 167 160 139 230
-23 233 204 216 196
-24 232 134 180 173
-25 235 236 193 172
-26 231 177 148 150
-27 169 191 129 175
-28 148 150 151 219
-29 210 147 224 239
-30 179 129 228 240
-31 166 212 234 202
-32 135 192 150 174
-33 135 227 238 217
-34 121 232 123 218
-35 121 204 216 164
-36 165 203 140 163
-37 143 198 194 174
-38 205 141 152 218
-39 160 139 227 185
-40 231 178 124 213
-41 221 145 225 153
-42 154 138 171 206
-43 220 199 169 142
-44 144 158 152 218
-45 209 159 182 130
-46 143 161 194 184
-47 188 200 215 131
-48 187 178 124 190
-49 144 188 215 197
-50 155 159 183 142
-51 187 190 158 237
-52 159 225 130 175
-53 148 227 162 185
-54 155 221 129 240
-55 156 215 237 230
-56 169 161 229 142
-57 154 223 139 195
-58 156 222 226 237
-59 132 223 162 195
-60 211 235 229 240
-61 134 167 239 230
-62 211 233 183 196
-63 188 134 157 180
-64 191 235 236 184
-65 231 177 127 160
-66 169 182 193 129
-67 190 147 171 239
-68 178 212 202 131
-69 176 137 192 174
-70 124 126 227 217
-71 121 209 123 228
-72 145 201 214 153
-73 154 177 202 138
-74 200 195 217 131
-75 221 233 225 236
-76 133 180 171 206
-77 166 136 195 217
-78 161 184 130 196
-79 132 177 202 208
-80 201 136 214 208
-81 210 158 203 237
-82 133 203 163 197
-83 133 180 224 152
-84 199 172 130 196
-85 144 226 173 197
-86 145 168 191 184
-87 231 234 213 238
-88 220 235 216 240
-89 134 222 239 163
-90 143 211 183 153
-91 234 214 238 219
-92 209 233 236 228
-93 176 137 161 229
-94 178 181 206 131
-95 225 128 194 175
-96 124 126 215 230
-97 144 158 181 206
-98 179 159 204 142
-99 201 148 170 162
-100 122 155 221 125
-101 154 188 157 139
-102 190 127 160 171
-103 165 146 182 193
-104 136 213 185 208
-105 165 146 224 152
-106 198 166 189 136
-107 222 149 163 207
-108 132 151 186 208
-109 210 203 141 164
-110 122 125 214 219
-111 226 205 140 173
-112 179 204 205 140
-113 201 170 128 194
-114 198 145 189 168
-115 199 172 141 164
-116 187 133 167 197
-117 220 149 216 207
-118 143 151 153 186
-119 200 213 138 185
-120 187 167 200 138
-121 34 35 71 17
-122 110 100 16 21
-123 34 14 71 7
-124 48 70 40 96
-125 110 100 3 5
-126 1 2 70 96
-127 1 2 102 65
-128 13 113 6 95
-129 66 27 30 54
-130 45 78 84 52
-131 68 47 94 74
-132 79 59 19 108
-133 82 83 116 76
-134 89 24 61 63
-135 11 33 10 32
-136 77 80 104 106
-137 3 69 5 93
-138 73 42 119 120
-139 22 57 101 39
-140 111 112 36 18
-141 38 115 20 109
-142 56 50 43 98
-143 46 90 37 118
-144 44 49 85 97
-145 114 72 41 86
-146 15 103 105 8
-147 12 67 4 29
-148 99 26 28 53
-149 15 117 8 107
-150 26 28 10 32
-151 6 28 118 108
-152 44 38 83 105
-153 90 72 41 118
-154 57 101 73 42
-155 100 13 50 54
-156 55 12 58 4
-157 1 101 4 63
-158 44 81 51 97
-159 45 50 52 98
-160 22 102 39 65
-161 56 78 46 93
-162 99 59 19 53
-163 89 36 82 107
-164 35 115 17 109
-165 36 103 105 18
-166 77 106 9 31
-167 22 61 116 120
-168 114 16 86 21
-169 66 56 27 43
-170 11 99 3 113
-171 67 102 42 76
-172 14 25 115 84
-173 111 24 15 85
-174 69 37 19 32
-175 5 27 95 52
-176 13 69 93 6
-177 79 26 73 65
-178 68 48 94 40
-179 112 8 30 98
-180 24 83 63 76
-181 1 4 94 97
-182 66 45 103 20
-183 13 90 50 62
-184 78 46 64 86
-185 104 39 53 119
-186 16 118 9 108
-187 48 116 51 120
-188 101 47 49 63
-189 11 3 114 106
-190 67 102 48 51
-191 5 27 64 86
-192 69 16 9 32
-193 66 14 25 103
-194 46 113 37 95
-195 77 57 59 74
-196 23 78 62 84
-197 49 82 116 85
-198 37 114 106 19
-199 115 18 84 43
-200 47 74 119 120
-201 99 80 113 72
-202 68 79 73 31
-203 36 81 82 109
-204 23 35 112 98
-205 111 112 38 20
-206 94 42 97 76
-207 14 7 117 107
-208 79 80 104 108
-209 45 92 71 20
-210 81 7 29 109
-211 90 60 62 21
-212 2 68 31 10
-213 104 40 119 87
-214 110 80 91 72
-215 55 47 49 96
-216 88 23 35 117
-217 33 77 70 74
-218 44 12 34 38
-219 110 91 6 28
-220 88 18 117 43
-221 100 41 75 54
-222 89 58 17 107
-223 2 57 59 10
-224 83 105 7 29
-225 95 41 52 75
-226 111 58 17 85
-227 33 70 39 53
-228 92 71 8 30
-229 56 60 93 21
-230 22 55 61 96
-231 26 40 65 87
-232 12 34 24 15
-233 23 92 62 75
-234 91 9 31 87
-235 88 25 60 64
-236 25 92 64 75
-237 55 58 81 51
-238 11 33 91 87
-239 67 89 61 29
-240 88 60 30 54
0