C4graphConstructions for C4[ 240, 47 ] = PL(MC3(10,12,1,7,5,0,1),[4^30,10^12])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 240, 47 ]. See Glossary for some detail.

PL(MC3( 10, 12, 1, 7, 5, 0, 1), [4^30, 10^12]) = PL(Curtain_ 30( 1, 12, 1, 2, 20), [4^30, 10^12]) = PL(BC_60({ 0, 30 }, { 1, 49 })

      = PL(ATD[ 6, 1]#DCyc[ 10]) = PL(ATD[ 6, 1]#ATD[ 30, 1]) = PL(ATD[ 12, 5]#DCyc[ 5])

      = PL(ATD[ 12, 5]#DCyc[ 10]) = PL(ATD[ 12, 5]#ATD[ 15, 1]) = PL(ATD[ 12, 5]#ATD[ 30, 1])

      = PL(ATD[ 15, 1]#DCyc[ 4]) = PL(ATD[ 30, 1]#DCyc[ 4]) = XI(Rmap(120, 37) { 6, 20| 4}_ 30)

      = PL(CSI(Octahedron[ 4^ 3], 10)) = PL(CSI(W( 6, 2)[ 4^ 6], 5)) = PL(CSI(W( 6, 2)[ 4^ 6], 10))

      = BGCG(W( 6, 2), C_ 10, {1, 1', 2', 3', 4', 5'}) = PL(CSI(C_ 15(1, 4)[ 10^ 3], 4)) = PL(CS(C_ 30(1, 11)[ 10^ 6], 0))

      = PL(CSI(C_ 30(1, 11)[ 10^ 6], 4)) = BGCG(C_ 30(1, 11), C_ 4, {3', 4, 4'}) = BGCG(KE_30(1,3,10,13,11); K1;3)

     

Cyclic coverings

mod 60:
1234
1 - - 0 1 0 31
2 - - 0 49 0 19
3 0 59 0 11 - -
4 0 29 0 41 - -