[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 240, 49 ]. See Glossary for some
detail.
PL(LoPr_ 30( 3, 10, 12, 10, 3), [6^20, 10^12]) = PL(ATD[ 10, 1]#ATD[ 12,
2]) = PL(ATD[ 12, 2]#ATD[ 20, 1])
= PL(ATD[ 20, 1]#DCyc[ 3]) = PL(ATD[ 20, 1]#DCyc[ 6]) = XI(Cmap(120, 1)
{ 4, 12| 10}_ 60)
= XI(Cmap(120, 2) { 4, 12| 10}_ 60) = XI(Cmap(120, 11) { 12, 12| 30}_ 20) =
XI(Cmap(120, 12) { 12, 12| 30}_ 20)
= PL(CSI({4, 4}_ 4, 2[ 10^ 4], 3)) = PL(CSI({4, 4}_ 4, 2[ 10^ 4], 6))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | - | 0 1 | - | - | - | - | 0 5 | - | - | - | - |
2 | - | - | - | - | - | - | - | - | - | - | 0 | - | 0 | - | - | 0 | 0 | - | - | - |
3 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 11 | 0 7 | - | - | - | - | - |
4 | - | - | - | - | - | - | - | - | - | - | 8 | 0 | - | - | - | 0 | - | - | 0 | - |
5 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 0 | - | - | 0 | - | 0 |
6 | - | - | - | - | - | - | - | - | - | - | - | 9 | - | - | - | - | - | 1 | 9 | 5 |
7 | - | - | - | - | - | - | - | - | - | - | - | 2 | 3 | - | - | - | 7 | - | 6 | - |
8 | - | - | - | - | - | - | - | - | - | - | - | - | 11 | 6 | 2 | - | 11 | - | - | - |
9 | - | - | - | - | - | - | - | - | - | - | - | - | 11 | - | - | - | 3 | 1 | - | 5 |
10 | - | - | - | - | - | - | - | - | - | - | - | 2 | - | - | - | - | - | 4 | 6 | 4 |
11 | 0 11 | 0 | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12 | - | - | - | 0 | - | 3 | 10 | - | - | 10 | - | - | - | - | - | - | - | - | - | - |
13 | - | 0 | - | - | - | - | 9 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
14 | - | - | 0 1 | - | 0 | - | - | 6 | - | - | - | - | - | - | - | - | - | - | - | - |
15 | - | - | 0 5 | - | 0 | - | - | 10 | - | - | - | - | - | - | - | - | - | - | - | - |
16 | 0 7 | 0 | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17 | - | 0 | - | - | - | - | 5 | 1 | 9 | - | - | - | - | - | - | - | - | - | - | - |
18 | - | - | - | - | 0 | 11 | - | - | 11 | 8 | - | - | - | - | - | - | - | - | - | - |
19 | - | - | - | 0 | - | 3 | 6 | - | - | 6 | - | - | - | - | - | - | - | - | - | - |
20 | - | - | - | - | 0 | 7 | - | - | 7 | 8 | - | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 3 | - | 0 3 | - |
2 | - | - | - | - | 20 | 0 | 0 | 0 |
3 | - | - | - | - | 20 | 12 | 0 | 12 |
4 | - | - | - | - | - | 21 24 | - | 1 4 |
5 | 0 27 | 10 | 10 | - | - | - | - | - |
6 | - | 0 | 18 | 6 9 | - | - | - | - |
7 | 0 27 | 0 | 0 | - | - | - | - | - |
8 | - | 0 | 18 | 26 29 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 24 | 0 | 24 |
3 | - | - | - | - | 10 | 21 | 0 | 1 |
4 | - | - | - | - | 10 | 3 | 0 | 13 |
5 | 0 | 0 | 20 | 20 | - | - | - | - |
6 | 0 | 6 | 9 | 27 | - | - | - | - |
7 | 0 | 0 | 0 | 0 | - | - | - | - |
8 | 0 | 6 | 29 | 17 | - | - | - | - |