C4graphGraph forms for C4 [ 240, 53 ] = KE_60(1,33,10,13,11)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 53 ] = KE_60(1,33,10,13,11).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {1, 2}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {3, 4}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {112, 122}, {113, 123}, {116, 126}, {117, 127}, {192, 203}, {228, 239}, {224, 235}, {212, 223}, {208, 219}, {196, 207}, {193, 204}, {227, 238}, {225, 236}, {211, 222}, {209, 220}, {195, 206}, {114, 124}, {115, 125}, {7, 8}, {226, 237}, {210, 221}, {194, 205}, {55, 56}, {23, 24}, {39, 40}, {197, 208}, {229, 240}, {207, 218}, {205, 216}, {199, 210}, {111, 121}, {198, 209}, {206, 217}, {36, 63}, {204, 215}, {200, 211}, {35, 62}, {203, 214}, {201, 212}, {15, 16}, {202, 213}, {47, 48}, {34, 61}, {213, 224}, {223, 234}, {221, 232}, {215, 226}, {214, 225}, {222, 233}, {216, 227}, {220, 231}, {64, 124}, {67, 127}, {66, 126}, {65, 125}, {128, 188}, {129, 189}, {130, 190}, {131, 191}, {1, 60}, {219, 230}, {217, 228}, {31, 32}, {218, 229}, {61, 121}, {180, 240}, {175, 235}, {174, 234}, {173, 233}, {172, 232}, {167, 227}, {166, 226}, {165, 225}, {164, 224}, {159, 219}, {158, 218}, {157, 217}, {156, 216}, {151, 211}, {150, 210}, {149, 209}, {148, 208}, {143, 203}, {142, 202}, {141, 201}, {140, 200}, {63, 123}, {62, 122}, {132, 192}, {133, 193}, {134, 194}, {135, 195}, {136, 196}, {171, 231}, {170, 230}, {169, 229}, {168, 228}, {155, 215}, {154, 214}, {153, 213}, {152, 212}, {139, 199}, {137, 197}, {138, 198}, {191, 240}, {182, 231}, {190, 239}, {188, 237}, {186, 235}, {184, 233}, {181, 230}, {189, 238}, {185, 234}, {8, 95}, {187, 236}, {32, 119}, {1, 88}, {3, 90}, {5, 92}, {7, 94}, {33, 120}, {2, 89}, {6, 93}, {144, 204}, {179, 239}, {178, 238}, {177, 237}, {176, 236}, {147, 207}, {146, 206}, {145, 205}, {4, 91}, {183, 232}, {37, 64}, {55, 82}, {53, 80}, {47, 74}, {45, 72}, {39, 66}, {38, 65}, {54, 81}, {46, 73}, {9, 96}, {11, 98}, {13, 100}, {15, 102}, {25, 112}, {27, 114}, {29, 116}, {31, 118}, {10, 97}, {60, 87}, {56, 83}, {44, 71}, {14, 101}, {26, 113}, {30, 117}, {40, 67}, {41, 68}, {59, 86}, {57, 84}, {43, 70}, {12, 99}, {58, 85}, {42, 69}, {28, 115}, {181, 192}, {191, 202}, {189, 200}, {183, 194}, {16, 103}, {190, 201}, {182, 193}, {24, 111}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {5, 125}, {6, 126}, {7, 127}, {17, 104}, {19, 106}, {21, 108}, {23, 110}, {18, 105}, {188, 199}, {184, 195}, {52, 79}, {48, 75}, {22, 109}, {160, 220}, {163, 223}, {162, 222}, {161, 221}, {49, 76}, {187, 198}, {185, 196}, {51, 78}, {20, 107}, {186, 197}, {50, 77}, {64, 197}, {72, 205}, {66, 199}, {74, 207}, {80, 213}, {82, 215}, {88, 221}, {90, 223}, {96, 229}, {98, 231}, {104, 237}, {106, 239}, {65, 198}, {73, 206}, {81, 214}, {89, 222}, {97, 230}, {105, 238}, {8, 128}, {60, 180}, {59, 179}, {58, 178}, {57, 177}, {56, 176}, {47, 167}, {46, 166}, {45, 165}, {44, 164}, {43, 163}, {42, 162}, {9, 129}, {10, 130}, {11, 131}, {12, 132}, {13, 133}, {14, 134}, {15, 135}, {24, 144}, {25, 145}, {26, 146}, {27, 147}, {28, 148}, {29, 149}, {30, 150}, {31, 151}, {40, 160}, {41, 161}, {67, 200}, {71, 204}, {83, 216}, {87, 220}, {99, 232}, {103, 236}, {68, 201}, {70, 203}, {84, 217}, {86, 219}, {100, 233}, {102, 235}, {69, 202}, {85, 218}, {101, 234}, {16, 136}, {55, 175}, {54, 174}, {53, 173}, {52, 172}, {51, 171}, {50, 170}, {49, 169}, {48, 168}, {17, 137}, {18, 138}, {19, 139}, {20, 140}, {21, 141}, {22, 142}, {23, 143}, {75, 208}, {79, 212}, {107, 240}, {76, 209}, {78, 211}, {77, 210}, {119, 192}, {32, 152}, {33, 153}, {34, 154}, {35, 155}, {36, 156}, {37, 157}, {38, 158}, {39, 159}, {120, 193}, {62, 132}, {63, 133}, {91, 224}, {95, 228}, {92, 225}, {94, 227}, {61, 131}, {93, 226}, {68, 128}, {71, 131}, {70, 130}, {69, 129}, {76, 136}, {77, 137}, {78, 138}, {79, 139}, {84, 144}, {85, 145}, {86, 146}, {87, 147}, {92, 152}, {93, 153}, {94, 154}, {95, 155}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {116, 176}, {117, 177}, {118, 178}, {119, 179}, {124, 184}, {125, 185}, {126, 186}, {127, 187}, {64, 134}, {73, 143}, {72, 142}, {65, 135}, {80, 150}, {81, 151}, {88, 158}, {89, 159}, {96, 166}, {97, 167}, {104, 174}, {105, 175}, {112, 185}, {114, 187}, {116, 189}, {118, 191}, {66, 136}, {71, 141}, {70, 140}, {67, 137}, {82, 152}, {83, 153}, {86, 156}, {87, 157}, {98, 168}, {99, 169}, {102, 172}, {103, 173}, {113, 186}, {117, 190}, {72, 132}, {74, 134}, {73, 133}, {75, 135}, {88, 148}, {89, 149}, {90, 150}, {91, 151}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {120, 180}, {121, 181}, {122, 182}, {123, 183}, {68, 138}, {69, 139}, {84, 154}, {85, 155}, {100, 170}, {101, 171}, {115, 188}, {111, 184}, {108, 181}, {110, 183}, {74, 144}, {75, 145}, {78, 148}, {79, 149}, {106, 176}, {107, 177}, {110, 180}, {109, 182}, {80, 140}, {81, 141}, {82, 142}, {83, 143}, {112, 172}, {113, 173}, {114, 174}, {115, 175}, {76, 146}, {77, 147}, {108, 178}, {109, 179}, {118, 128}, {119, 129}, {90, 160}, {91, 161}, {94, 164}, {95, 165}, {120, 130}, {63, 196}, {96, 156}, {97, 157}, {98, 158}, {99, 159}, {62, 195}, {92, 162}, {93, 163}, {61, 194} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 88)(3, 148)(4, 28)(5, 115)(6, 175)(7, 55)(8, 82)(9, 142)(10, 22)(11, 109)(12, 169)(13, 49)(14, 76)(15, 136)(17, 103)(18, 163)(19, 43)(20, 70)(21, 130)(23, 97)(24, 157)(25, 37)(26, 64)(27, 124)(29, 91)(30, 151)(32, 118)(33, 178)(34, 58)(35, 85)(36, 145)(38, 112)(39, 172)(40, 52)(41, 79)(42, 139)(44, 106)(45, 166)(47, 73)(48, 133)(50, 100)(51, 160)(53, 67)(54, 127)(56, 94)(57, 154)(59, 61)(60, 121)(62, 218)(63, 75)(65, 185)(66, 102)(68, 212)(71, 239)(72, 96)(74, 206)(77, 233)(78, 90)(80, 200)(81, 117)(83, 227)(86, 194)(87, 111)(89, 221)(92, 188)(93, 105)(95, 215)(98, 182)(101, 209)(104, 236)(107, 203)(108, 120)(110, 230)(113, 197)(116, 224)(119, 191)(122, 158)(123, 208)(126, 235)(128, 152)(129, 202)(131, 179)(132, 229)(134, 146)(135, 196)(137, 173)(138, 223)(141, 190)(143, 167)(144, 217)(147, 184)(149, 161)(150, 211)(153, 238)(156, 205)(159, 232)(162, 199)(164, 176)(165, 226)(168, 193)(171, 220)(174, 187)(177, 214)(180, 181)(183, 219)(189, 213)(192, 240)(195, 207)(198, 234)(204, 228)(210, 222)(225, 237)
b: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12, 50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22, 40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 148)(62, 147)(63, 146)(64, 145)(65, 144)(66, 143)(67, 142)(68, 141)(69, 140)(70, 139)(71, 138)(72, 137)(73, 136)(74, 135)(75, 134)(76, 133)(77, 132)(78, 131)(79, 130)(80, 129)(81, 128)(82, 127)(83, 126)(84, 125)(85, 124)(86, 123)(87, 122)(88, 121)(89, 180)(90, 179)(91, 178)(92, 177)(93, 176)(94, 175)(95, 174)(96, 173)(97, 172)(98, 171)(99, 170)(100, 169)(101, 168)(102, 167)(103, 166)(104, 165)(105, 164)(106, 163)(107, 162)(108, 161)(109, 160)(110, 159)(111, 158)(112, 157)(113, 156)(114, 155)(115, 154)(116, 153)(117, 152)(118, 151)(119, 150)(120, 149)(181, 221)(182, 220)(183, 219)(184, 218)(185, 217)(186, 216)(187, 215)(188, 214)(189, 213)(190, 212)(191, 211)(192, 210)(193, 209)(194, 208)(195, 207)(196, 206)(197, 205)(198, 204)(199, 203)(200, 202)(222, 240)(223, 239)(224, 238)(225, 237)(226, 236)(227, 235)(228, 234)(229, 233)(230, 232)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 53 ]
240
-1 88 121 2 60
-2 1 89 122 3
-3 2 90 123 4
-4 3 91 124 5
-5 4 92 125 6
-6 5 93 126 7
-7 6 94 127 8
-8 7 95 128 9
-9 8 96 129 10
-10 11 9 97 130
-11 12 10 98 131
-12 11 99 132 13
-13 12 100 133 14
-14 13 101 134 15
-15 14 102 135 16
-16 15 103 136 17
-17 16 104 137 18
-18 17 105 138 19
-19 18 106 139 20
-20 19 107 140 21
-21 22 20 108 141
-22 23 21 109 142
-23 22 110 143 24
-24 23 111 144 25
-25 24 112 145 26
-26 25 113 146 27
-27 26 114 147 28
-28 27 115 148 29
-29 28 116 149 30
-30 29 117 150 31
-31 30 118 151 32
-32 33 31 119 152
-33 34 32 120 153
-34 33 154 35 61
-35 34 155 36 62
-36 35 156 37 63
-37 36 157 38 64
-38 37 158 39 65
-39 66 38 159 40
-40 67 39 160 41
-41 68 40 161 42
-42 69 41 162 43
-43 44 70 42 163
-44 45 71 43 164
-45 44 165 46 72
-46 45 166 47 73
-47 46 167 48 74
-48 47 168 49 75
-49 48 169 50 76
-50 77 49 170 51
-51 78 50 171 52
-52 79 51 172 53
-53 80 52 173 54
-54 55 81 53 174
-55 56 82 54 175
-56 55 176 57 83
-57 56 177 58 84
-58 57 178 59 85
-59 58 179 60 86
-60 1 59 180 87
-61 121 34 194 131
-62 132 122 35 195
-63 133 123 36 196
-64 134 124 37 197
-65 198 135 125 38
-66 199 136 126 39
-67 200 137 127 40
-68 201 138 128 41
-69 202 139 129 42
-70 203 140 130 43
-71 44 204 141 131
-72 132 45 205 142
-73 143 133 46 206
-74 144 134 47 207
-75 145 135 48 208
-76 209 146 136 49
-77 210 147 137 50
-78 211 148 138 51
-79 212 149 139 52
-80 213 150 140 53
-81 214 151 141 54
-82 55 215 152 142
-83 143 56 216 153
-84 154 144 57 217
-85 155 145 58 218
-86 156 146 59 219
-87 220 157 147 60
-88 1 221 158 148
-89 2 222 159 149
-90 3 223 160 150
-91 4 224 161 151
-92 5 225 162 152
-93 6 226 163 153
-94 154 7 227 164
-95 165 155 8 228
-96 166 156 9 229
-97 167 157 10 230
-98 11 231 168 158
-99 12 232 169 159
-100 13 233 170 160
-101 14 234 171 161
-102 15 235 172 162
-103 16 236 173 163
-104 17 237 174 164
-105 165 18 238 175
-106 176 166 19 239
-107 177 167 20 240
-108 178 168 181 21
-109 22 179 169 182
-110 23 180 170 183
-111 121 24 171 184
-112 122 25 172 185
-113 123 26 173 186
-114 187 124 27 174
-115 188 125 28 175
-116 176 189 126 29
-117 177 190 127 30
-118 178 191 128 31
-119 179 192 129 32
-120 33 180 193 130
-121 1 111 181 61
-122 2 112 182 62
-123 3 113 183 63
-124 4 114 184 64
-125 5 115 185 65
-126 66 6 116 186
-127 187 67 7 117
-128 188 68 8 118
-129 189 69 9 119
-130 190 70 10 120
-131 11 191 71 61
-132 12 192 72 62
-133 13 193 73 63
-134 14 194 74 64
-135 15 195 75 65
-136 66 16 196 76
-137 77 67 17 197
-138 198 78 68 18
-139 199 79 69 19
-140 200 80 70 20
-141 201 81 71 21
-142 22 202 82 72
-143 23 203 83 73
-144 24 204 84 74
-145 25 205 85 75
-146 26 206 86 76
-147 77 27 207 87
-148 88 78 28 208
-149 209 89 79 29
-150 210 90 80 30
-151 211 91 81 31
-152 212 92 82 32
-153 33 213 93 83
-154 34 214 94 84
-155 35 215 95 85
-156 36 216 96 86
-157 37 217 97 87
-158 88 38 218 98
-159 99 89 39 219
-160 220 100 90 40
-161 221 101 91 41
-162 222 102 92 42
-163 223 103 93 43
-164 44 224 104 94
-165 45 225 105 95
-166 46 226 106 96
-167 47 227 107 97
-168 48 228 108 98
-169 99 49 229 109
-170 110 100 50 230
-171 231 111 101 51
-172 232 112 102 52
-173 233 113 103 53
-174 234 114 104 54
-175 55 235 115 105
-176 56 236 116 106
-177 57 237 117 107
-178 58 238 118 108
-179 59 239 119 109
-180 110 60 240 120
-181 121 192 108 230
-182 231 122 193 109
-183 110 232 123 194
-184 111 233 124 195
-185 112 234 125 196
-186 113 235 126 197
-187 198 114 236 127
-188 199 115 237 128
-189 200 116 238 129
-190 201 117 239 130
-191 202 118 240 131
-192 132 181 203 119
-193 133 182 204 120
-194 134 61 183 205
-195 135 62 184 206
-196 136 63 185 207
-197 137 64 186 208
-198 187 209 138 65
-199 66 188 210 139
-200 67 189 211 140
-201 68 190 212 141
-202 69 191 213 142
-203 143 70 192 214
-204 144 71 193 215
-205 145 72 194 216
-206 146 73 195 217
-207 147 74 196 218
-208 148 75 197 219
-209 198 220 149 76
-210 77 199 221 150
-211 78 200 222 151
-212 79 201 223 152
-213 80 202 224 153
-214 154 81 203 225
-215 155 82 204 226
-216 156 83 205 227
-217 157 84 206 228
-218 158 85 207 229
-219 159 86 208 230
-220 209 231 160 87
-221 88 210 232 161
-222 89 211 233 162
-223 90 212 234 163
-224 91 213 235 164
-225 165 92 214 236
-226 166 93 215 237
-227 167 94 216 238
-228 168 95 217 239
-229 169 96 218 240
-230 170 181 97 219
-231 220 171 182 98
-232 99 221 172 183
-233 100 222 173 184
-234 101 223 174 185
-235 102 224 175 186
-236 176 187 103 225
-237 177 188 104 226
-238 178 189 105 227
-239 179 190 106 228
-240 180 191 107 229
0

**************