C4graphGraph forms for C4 [ 240, 55 ] = KE_60(1,29,17,33,14)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 55 ] = KE_60(1,29,17,33,14).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {1, 2}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {3, 4}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {192, 206}, {225, 239}, {224, 238}, {209, 223}, {208, 222}, {193, 207}, {7, 8}, {55, 56}, {23, 24}, {39, 40}, {104, 121}, {106, 123}, {108, 125}, {110, 127}, {194, 208}, {226, 240}, {207, 221}, {206, 220}, {203, 217}, {202, 216}, {199, 213}, {198, 212}, {195, 209}, {105, 122}, {109, 126}, {196, 210}, {205, 219}, {204, 218}, {197, 211}, {107, 124}, {200, 214}, {201, 215}, {15, 16}, {47, 48}, {32, 63}, {31, 62}, {30, 61}, {192, 238}, {193, 239}, {194, 240}, {223, 237}, {222, 236}, {219, 233}, {218, 232}, {215, 229}, {214, 228}, {211, 225}, {210, 224}, {212, 226}, {221, 235}, {220, 234}, {213, 227}, {64, 124}, {67, 127}, {66, 126}, {65, 125}, {128, 188}, {129, 189}, {130, 190}, {131, 191}, {1, 60}, {216, 230}, {217, 231}, {31, 32}, {61, 121}, {180, 240}, {175, 235}, {174, 234}, {173, 233}, {172, 232}, {167, 227}, {166, 226}, {165, 225}, {164, 224}, {159, 219}, {158, 218}, {157, 217}, {156, 216}, {151, 211}, {150, 210}, {149, 209}, {148, 208}, {143, 203}, {142, 202}, {63, 123}, {62, 122}, {132, 192}, {133, 193}, {134, 194}, {135, 195}, {140, 200}, {141, 201}, {136, 196}, {171, 231}, {170, 230}, {169, 229}, {168, 228}, {155, 215}, {154, 214}, {153, 213}, {152, 212}, {137, 197}, {138, 198}, {139, 199}, {182, 228}, {191, 237}, {190, 236}, {187, 233}, {186, 232}, {183, 229}, {181, 227}, {189, 235}, {188, 234}, {4, 95}, {144, 204}, {179, 239}, {178, 238}, {177, 237}, {176, 236}, {147, 207}, {146, 206}, {145, 205}, {1, 92}, {3, 94}, {184, 230}, {185, 231}, {2, 93}, {33, 64}, {59, 90}, {57, 88}, {55, 86}, {53, 84}, {51, 82}, {49, 80}, {47, 78}, {45, 76}, {43, 74}, {35, 66}, {37, 68}, {39, 70}, {41, 72}, {34, 65}, {58, 89}, {54, 85}, {50, 81}, {46, 77}, {42, 73}, {38, 69}, {5, 96}, {7, 98}, {13, 104}, {15, 106}, {21, 112}, {23, 114}, {29, 120}, {6, 97}, {60, 91}, {52, 83}, {44, 75}, {14, 105}, {22, 113}, {36, 67}, {8, 99}, {12, 103}, {24, 115}, {28, 119}, {9, 100}, {11, 102}, {25, 116}, {27, 118}, {10, 101}, {56, 87}, {26, 117}, {40, 71}, {182, 196}, {191, 205}, {190, 204}, {187, 201}, {186, 200}, {183, 197}, {181, 195}, {189, 203}, {188, 202}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {5, 125}, {6, 126}, {7, 127}, {16, 107}, {20, 111}, {160, 220}, {163, 223}, {162, 222}, {161, 221}, {17, 108}, {19, 110}, {184, 198}, {185, 199}, {18, 109}, {48, 79}, {8, 128}, {60, 180}, {59, 179}, {58, 178}, {57, 177}, {56, 176}, {47, 167}, {46, 166}, {45, 165}, {44, 164}, {43, 163}, {42, 162}, {9, 129}, {10, 130}, {11, 131}, {12, 132}, {13, 133}, {14, 134}, {15, 135}, {24, 144}, {25, 145}, {26, 146}, {27, 147}, {28, 148}, {29, 149}, {30, 150}, {31, 151}, {40, 160}, {41, 161}, {16, 136}, {55, 175}, {54, 174}, {53, 173}, {52, 172}, {51, 171}, {50, 170}, {49, 169}, {48, 168}, {17, 137}, {18, 138}, {19, 139}, {20, 140}, {21, 141}, {22, 142}, {23, 143}, {64, 217}, {70, 223}, {68, 221}, {66, 219}, {65, 218}, {69, 222}, {67, 220}, {99, 192}, {103, 196}, {107, 200}, {111, 204}, {115, 208}, {119, 212}, {100, 193}, {102, 195}, {108, 201}, {110, 203}, {116, 209}, {118, 211}, {71, 224}, {79, 232}, {87, 240}, {101, 194}, {109, 202}, {117, 210}, {72, 225}, {74, 227}, {76, 229}, {78, 231}, {73, 226}, {77, 230}, {104, 197}, {106, 199}, {120, 213}, {75, 228}, {105, 198}, {63, 140}, {62, 139}, {61, 138}, {32, 152}, {33, 153}, {34, 154}, {35, 155}, {36, 156}, {37, 157}, {38, 158}, {39, 159}, {80, 233}, {82, 235}, {84, 237}, {86, 239}, {81, 234}, {85, 238}, {112, 205}, {114, 207}, {83, 236}, {113, 206}, {68, 128}, {71, 131}, {70, 130}, {69, 129}, {76, 136}, {77, 137}, {78, 138}, {79, 139}, {84, 144}, {85, 145}, {86, 146}, {87, 147}, {92, 152}, {93, 153}, {94, 154}, {95, 155}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {116, 176}, {117, 177}, {118, 178}, {119, 179}, {124, 184}, {125, 185}, {126, 186}, {127, 187}, {72, 132}, {75, 135}, {74, 134}, {73, 133}, {88, 148}, {89, 149}, {90, 150}, {91, 151}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {120, 180}, {121, 181}, {122, 182}, {123, 183}, {64, 141}, {66, 143}, {80, 157}, {82, 159}, {96, 173}, {98, 175}, {65, 142}, {81, 158}, {97, 174}, {67, 144}, {75, 152}, {71, 148}, {79, 156}, {99, 176}, {103, 180}, {68, 145}, {70, 147}, {76, 153}, {78, 155}, {100, 177}, {102, 179}, {69, 146}, {77, 154}, {101, 178}, {80, 140}, {81, 141}, {82, 142}, {83, 143}, {112, 172}, {113, 173}, {114, 174}, {115, 175}, {72, 149}, {74, 151}, {96, 189}, {98, 191}, {73, 150}, {97, 190}, {91, 184}, {95, 188}, {92, 185}, {94, 187}, {63, 216}, {93, 186}, {62, 215}, {61, 214}, {88, 181}, {90, 183}, {89, 182}, {111, 128}, {112, 129}, {114, 131}, {116, 133}, {118, 135}, {120, 137}, {83, 160}, {87, 164}, {91, 168}, {95, 172}, {113, 130}, {117, 134}, {84, 161}, {86, 163}, {92, 169}, {94, 171}, {85, 162}, {93, 170}, {115, 132}, {96, 156}, {97, 157}, {98, 158}, {99, 159}, {88, 165}, {90, 167}, {89, 166}, {119, 136} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12, 50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22, 40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 152)(62, 151)(63, 150)(64, 149)(65, 148)(66, 147)(67, 146)(68, 145)(69, 144)(70, 143)(71, 142)(72, 141)(73, 140)(74, 139)(75, 138)(76, 137)(77, 136)(78, 135)(79, 134)(80, 133)(81, 132)(82, 131)(83, 130)(84, 129)(85, 128)(86, 127)(87, 126)(88, 125)(89, 124)(90, 123)(91, 122)(92, 121)(93, 180)(94, 179)(95, 178)(96, 177)(97, 176)(98, 175)(99, 174)(100, 173)(101, 172)(102, 171)(103, 170)(104, 169)(105, 168)(106, 167)(107, 166)(108, 165)(109, 164)(110, 163)(111, 162)(112, 161)(113, 160)(114, 159)(115, 158)(116, 157)(117, 156)(118, 155)(119, 154)(120, 153)(181, 185)(182, 184)(186, 240)(187, 239)(188, 238)(189, 237)(190, 236)(191, 235)(192, 234)(193, 233)(194, 232)(195, 231)(196, 230)(197, 229)(198, 228)(199, 227)(200, 226)(201, 225)(202, 224)(203, 223)(204, 222)(205, 221)(206, 220)(207, 219)(208, 218)(209, 217)(210, 216)(211, 215)(212, 214)
b: (2, 121, 92, 60)(3, 181, 169, 180)(4, 88, 109, 240)(5, 57, 126, 87)(6, 56)(7, 176, 97, 55)(8, 236, 174, 175)(9, 83, 114, 235)(10, 52, 131, 82)(11, 51)(12, 171, 102, 50)(13, 231, 179, 170)(14, 78, 119, 230)(15, 47, 136, 77)(16, 46)(17, 166, 107, 45)(18, 226, 124, 165)(19, 73, 64, 225)(20, 42, 141, 72)(21, 41)(22, 161, 112, 40)(23, 221, 129, 160)(24, 68, 69, 220)(25, 37, 146, 67)(26, 36)(27, 156, 117, 35)(28, 216, 134, 155)(29, 63, 74, 215)(30, 32, 151, 62)(33, 211, 139, 150)(34, 118, 79, 210)(38, 206, 144, 145)(39, 113, 84, 205)(43, 201, 149, 140)(44, 108, 89, 200)(48, 196, 154, 135)(49, 103, 94, 195)(53, 191, 159, 130)(54, 98, 99, 190)(58, 186, 164, 125)(59, 93, 104, 185)(61, 152, 91, 122)(65, 178, 232, 224)(66, 147, 96, 177)(70, 173, 237, 219)(71, 142, 101, 172)(75, 168, 182, 214)(76, 137, 106, 167)(80, 163, 187, 209)(81, 132, 111, 162)(85, 158, 192, 204)(86, 127, 116, 157)(90, 153, 197, 199)(95, 148, 202, 194)(100, 143, 207, 189)(105, 138, 212, 184)(110, 133, 217, 239)(115, 128, 222, 234)(120, 123, 227, 229)(183, 213)(188, 208)(193, 203)(218, 238)(223, 233)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 55 ]
240
-1 121 2 92 60
-2 1 122 3 93
-3 2 123 4 94
-4 3 124 5 95
-5 4 125 6 96
-6 5 126 7 97
-7 6 127 8 98
-8 99 7 128 9
-9 100 8 129 10
-10 11 101 9 130
-11 12 102 10 131
-12 11 132 13 103
-13 12 133 14 104
-14 13 134 15 105
-15 14 135 16 106
-16 15 136 17 107
-17 16 137 18 108
-18 17 138 19 109
-19 110 18 139 20
-20 111 19 140 21
-21 22 112 20 141
-22 23 113 21 142
-23 22 143 24 114
-24 23 144 25 115
-25 24 145 26 116
-26 25 146 27 117
-27 26 147 28 118
-28 27 148 29 119
-29 28 149 30 120
-30 61 29 150 31
-31 62 30 151 32
-32 33 63 31 152
-33 34 64 32 153
-34 33 154 35 65
-35 66 34 155 36
-36 67 35 156 37
-37 68 36 157 38
-38 69 37 158 39
-39 70 38 159 40
-40 71 39 160 41
-41 72 40 161 42
-42 73 41 162 43
-43 44 74 42 163
-44 45 75 43 164
-45 44 165 46 76
-46 77 45 166 47
-47 78 46 167 48
-48 79 47 168 49
-49 80 48 169 50
-50 81 49 170 51
-51 82 50 171 52
-52 83 51 172 53
-53 84 52 173 54
-54 55 85 53 174
-55 56 86 54 175
-56 55 176 57 87
-57 88 56 177 58
-58 89 57 178 59
-59 90 58 179 60
-60 1 91 59 180
-61 121 214 138 30
-62 122 215 139 31
-63 123 216 140 32
-64 33 124 217 141
-65 34 125 218 142
-66 143 35 126 219
-67 220 144 36 127
-68 221 145 37 128
-69 222 146 38 129
-70 223 147 39 130
-71 224 148 40 131
-72 132 225 149 41
-73 133 226 150 42
-74 134 227 151 43
-75 44 135 228 152
-76 45 136 229 153
-77 154 46 137 230
-78 231 155 47 138
-79 232 156 48 139
-80 233 157 49 140
-81 234 158 50 141
-82 235 159 51 142
-83 143 236 160 52
-84 144 237 161 53
-85 145 238 162 54
-86 55 146 239 163
-87 56 147 240 164
-88 165 57 148 181
-89 166 58 149 182
-90 167 59 150 183
-91 168 60 151 184
-92 1 169 152 185
-93 2 170 153 186
-94 154 187 3 171
-95 155 188 4 172
-96 156 189 5 173
-97 157 190 6 174
-98 158 191 7 175
-99 176 159 192 8
-100 177 160 193 9
-101 178 161 194 10
-102 11 179 162 195
-103 12 180 163 196
-104 121 13 164 197
-105 165 198 122 14
-106 166 199 123 15
-107 167 200 124 16
-108 168 201 125 17
-109 169 202 126 18
-110 170 203 127 19
-111 171 204 128 20
-112 172 205 129 21
-113 22 173 206 130
-114 23 174 207 131
-115 132 24 175 208
-116 176 209 133 25
-117 177 210 134 26
-118 178 211 135 27
-119 179 212 136 28
-120 180 213 137 29
-121 1 104 181 61
-122 2 105 182 62
-123 3 106 183 63
-124 4 107 184 64
-125 5 108 185 65
-126 66 6 109 186
-127 110 187 67 7
-128 111 188 68 8
-129 112 189 69 9
-130 113 190 70 10
-131 11 114 191 71
-132 12 115 192 72
-133 13 116 193 73
-134 14 117 194 74
-135 15 118 195 75
-136 16 119 196 76
-137 77 17 120 197
-138 198 78 61 18
-139 199 79 62 19
-140 200 80 63 20
-141 201 81 64 21
-142 22 202 82 65
-143 66 23 203 83
-144 67 24 204 84
-145 68 25 205 85
-146 69 26 206 86
-147 70 27 207 87
-148 88 71 28 208
-149 209 89 72 29
-150 210 90 73 30
-151 211 91 74 31
-152 212 92 75 32
-153 33 213 93 76
-154 77 34 214 94
-155 78 35 215 95
-156 79 36 216 96
-157 80 37 217 97
-158 81 38 218 98
-159 99 82 39 219
-160 220 100 83 40
-161 221 101 84 41
-162 222 102 85 42
-163 223 103 86 43
-164 44 224 104 87
-165 88 45 225 105
-166 89 46 226 106
-167 90 47 227 107
-168 91 48 228 108
-169 92 49 229 109
-170 110 93 50 230
-171 231 111 94 51
-172 232 112 95 52
-173 233 113 96 53
-174 234 114 97 54
-175 55 235 115 98
-176 99 56 236 116
-177 100 57 237 117
-178 101 58 238 118
-179 102 59 239 119
-180 103 60 240 120
-181 88 121 227 195
-182 89 122 228 196
-183 90 123 229 197
-184 198 91 124 230
-185 231 199 92 125
-186 232 200 93 126
-187 233 201 94 127
-188 234 202 95 128
-189 235 203 96 129
-190 236 204 97 130
-191 237 205 98 131
-192 99 132 238 206
-193 100 133 239 207
-194 101 134 240 208
-195 209 102 135 181
-196 210 103 136 182
-197 211 104 137 183
-198 212 105 138 184
-199 213 106 139 185
-200 214 107 140 186
-201 187 215 108 141
-202 188 216 109 142
-203 110 143 189 217
-204 111 144 190 218
-205 112 145 191 219
-206 220 113 146 192
-207 221 114 147 193
-208 222 115 148 194
-209 223 116 149 195
-210 224 117 150 196
-211 225 118 151 197
-212 198 226 119 152
-213 199 227 120 153
-214 154 200 61 228
-215 155 201 62 229
-216 156 202 63 230
-217 231 157 203 64
-218 232 158 204 65
-219 66 233 159 205
-220 67 234 160 206
-221 68 235 161 207
-222 69 236 162 208
-223 209 70 237 163
-224 210 71 238 164
-225 165 211 72 239
-226 166 212 73 240
-227 167 213 181 74
-228 168 214 182 75
-229 169 215 183 76
-230 77 170 216 184
-231 78 171 217 185
-232 79 172 218 186
-233 187 80 173 219
-234 220 188 81 174
-235 221 189 82 175
-236 176 222 190 83
-237 177 223 191 84
-238 178 224 192 85
-239 179 225 193 86
-240 180 226 194 87
0

**************