C4graphGraph forms for C4 [ 240, 58 ] = KE_60(1,23,20,3,19)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 58 ] = KE_60(1,23,20,3,19).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {2, 3}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {1, 2}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {3, 4}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {7, 8}, {55, 56}, {23, 24}, {39, 40}, {192, 211}, {204, 223}, {200, 219}, {196, 215}, {104, 124}, {105, 125}, {106, 126}, {107, 127}, {193, 212}, {203, 222}, {201, 220}, {195, 214}, {194, 213}, {202, 221}, {101, 121}, {102, 122}, {103, 123}, {197, 216}, {199, 218}, {15, 16}, {198, 217}, {47, 48}, {24, 61}, {26, 63}, {25, 62}, {192, 233}, {198, 239}, {196, 237}, {194, 235}, {193, 234}, {197, 238}, {205, 224}, {221, 240}, {207, 226}, {195, 236}, {206, 225}, {208, 227}, {220, 239}, {216, 235}, {212, 231}, {209, 228}, {219, 238}, {217, 236}, {211, 230}, {199, 240}, {218, 237}, {210, 229}, {64, 124}, {131, 191}, {130, 190}, {129, 189}, {128, 188}, {67, 127}, {66, 126}, {65, 125}, {1, 60}, {215, 234}, {213, 232}, {31, 32}, {214, 233}, {61, 121}, {180, 240}, {175, 235}, {174, 234}, {173, 233}, {172, 232}, {167, 227}, {166, 226}, {165, 225}, {164, 224}, {159, 219}, {158, 218}, {157, 217}, {156, 216}, {151, 211}, {150, 210}, {149, 209}, {148, 208}, {143, 203}, {142, 202}, {141, 201}, {140, 200}, {135, 195}, {134, 194}, {133, 193}, {132, 192}, {63, 123}, {62, 122}, {136, 196}, {171, 231}, {170, 230}, {169, 229}, {168, 228}, {155, 215}, {154, 214}, {153, 213}, {152, 212}, {139, 199}, {138, 198}, {137, 197}, {183, 224}, {191, 232}, {184, 225}, {190, 231}, {188, 229}, {186, 227}, {27, 64}, {189, 230}, {185, 226}, {59, 96}, {31, 68}, {144, 204}, {179, 239}, {178, 238}, {177, 237}, {176, 236}, {147, 207}, {146, 206}, {145, 205}, {28, 65}, {60, 97}, {30, 67}, {29, 66}, {187, 228}, {2, 99}, {4, 101}, {6, 103}, {8, 105}, {10, 107}, {12, 109}, {14, 111}, {16, 113}, {18, 115}, {20, 117}, {22, 119}, {1, 98}, {5, 102}, {9, 106}, {13, 110}, {17, 114}, {21, 118}, {32, 69}, {58, 95}, {56, 93}, {50, 87}, {48, 85}, {42, 79}, {34, 71}, {40, 77}, {3, 100}, {57, 94}, {49, 86}, {41, 78}, {11, 108}, {19, 116}, {33, 70}, {182, 223}, {35, 72}, {181, 222}, {55, 92}, {51, 88}, {39, 76}, {36, 73}, {191, 210}, {189, 208}, {54, 91}, {52, 89}, {38, 75}, {7, 104}, {190, 209}, {53, 90}, {23, 120}, {37, 74}, {184, 203}, {188, 207}, {185, 204}, {187, 206}, {186, 205}, {1, 121}, {2, 122}, {3, 123}, {4, 124}, {5, 125}, {6, 126}, {7, 127}, {43, 80}, {47, 84}, {160, 220}, {163, 223}, {162, 222}, {161, 221}, {44, 81}, {183, 202}, {181, 200}, {46, 83}, {15, 112}, {182, 201}, {45, 82}, {61, 184}, {69, 192}, {63, 186}, {71, 194}, {77, 200}, {79, 202}, {85, 208}, {87, 210}, {93, 216}, {95, 218}, {101, 224}, {103, 226}, {109, 232}, {111, 234}, {117, 240}, {62, 185}, {70, 193}, {78, 201}, {86, 209}, {94, 217}, {102, 225}, {110, 233}, {8, 128}, {60, 180}, {59, 179}, {58, 178}, {57, 177}, {56, 176}, {47, 167}, {46, 166}, {45, 165}, {44, 164}, {43, 163}, {42, 162}, {41, 161}, {9, 129}, {10, 130}, {11, 131}, {12, 132}, {13, 133}, {14, 134}, {15, 135}, {24, 144}, {25, 145}, {26, 146}, {27, 147}, {28, 148}, {29, 149}, {30, 150}, {31, 151}, {40, 160}, {72, 195}, {76, 199}, {88, 211}, {92, 215}, {104, 227}, {108, 231}, {73, 196}, {75, 198}, {89, 212}, {91, 214}, {105, 228}, {107, 230}, {74, 197}, {90, 213}, {106, 229}, {16, 136}, {55, 175}, {54, 174}, {53, 173}, {52, 172}, {51, 171}, {50, 170}, {49, 169}, {48, 168}, {17, 137}, {18, 138}, {19, 139}, {20, 140}, {21, 141}, {22, 142}, {23, 143}, {80, 203}, {84, 207}, {112, 235}, {116, 239}, {81, 204}, {83, 206}, {113, 236}, {115, 238}, {82, 205}, {114, 237}, {61, 141}, {63, 143}, {62, 142}, {32, 152}, {33, 153}, {34, 154}, {35, 155}, {36, 156}, {37, 157}, {38, 158}, {39, 159}, {96, 219}, {100, 223}, {97, 220}, {99, 222}, {98, 221}, {119, 182}, {118, 181}, {68, 128}, {127, 187}, {126, 186}, {125, 185}, {71, 131}, {70, 130}, {69, 129}, {76, 136}, {77, 137}, {78, 138}, {79, 139}, {84, 144}, {85, 145}, {86, 146}, {87, 147}, {92, 152}, {93, 153}, {94, 154}, {95, 155}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {116, 176}, {117, 177}, {118, 178}, {119, 179}, {124, 184}, {72, 132}, {73, 133}, {74, 134}, {75, 135}, {88, 148}, {89, 149}, {90, 150}, {91, 151}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {120, 180}, {121, 181}, {122, 182}, {123, 183}, {120, 183}, {64, 144}, {70, 150}, {69, 149}, {68, 148}, {67, 147}, {66, 146}, {65, 145}, {71, 151}, {72, 152}, {73, 153}, {74, 154}, {75, 155}, {76, 156}, {77, 157}, {78, 158}, {79, 159}, {96, 176}, {97, 177}, {98, 178}, {99, 179}, {100, 180}, {80, 140}, {81, 141}, {82, 142}, {83, 143}, {112, 172}, {113, 173}, {114, 174}, {115, 175}, {108, 128}, {109, 129}, {110, 130}, {111, 131}, {80, 160}, {81, 161}, {82, 162}, {83, 163}, {84, 164}, {85, 165}, {86, 166}, {87, 167}, {88, 168}, {89, 169}, {90, 170}, {91, 171}, {92, 172}, {93, 173}, {94, 174}, {95, 175}, {112, 132}, {113, 133}, {114, 134}, {115, 135}, {120, 140}, {64, 187}, {68, 191}, {96, 156}, {97, 157}, {98, 158}, {99, 159}, {116, 136}, {117, 137}, {118, 138}, {119, 139}, {65, 188}, {67, 190}, {66, 189} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 98)(3, 178)(4, 58)(5, 95)(6, 175)(7, 55)(8, 92)(9, 172)(10, 52)(11, 89)(12, 169)(13, 49)(14, 86)(15, 166)(16, 46)(17, 83)(18, 163)(19, 43)(20, 80)(21, 160)(22, 40)(23, 77)(24, 157)(25, 37)(26, 74)(27, 154)(28, 34)(29, 71)(30, 151)(32, 68)(33, 148)(35, 65)(36, 145)(38, 62)(39, 142)(41, 119)(42, 139)(44, 116)(45, 136)(47, 113)(48, 133)(50, 110)(51, 130)(53, 107)(54, 127)(56, 104)(57, 124)(59, 101)(60, 121)(61, 97)(63, 197)(64, 94)(66, 194)(67, 91)(69, 191)(70, 88)(72, 188)(73, 85)(75, 185)(76, 82)(78, 182)(81, 239)(84, 236)(87, 233)(90, 230)(93, 227)(96, 224)(99, 221)(100, 118)(102, 218)(103, 115)(105, 215)(106, 112)(108, 212)(111, 209)(114, 206)(117, 203)(120, 200)(122, 158)(123, 238)(125, 155)(126, 235)(128, 152)(129, 232)(131, 149)(132, 229)(134, 146)(135, 226)(137, 143)(138, 223)(141, 220)(144, 217)(147, 214)(150, 211)(153, 208)(156, 205)(159, 202)(161, 179)(162, 199)(164, 176)(165, 196)(167, 173)(168, 193)(171, 190)(174, 187)(177, 184)(180, 181)(183, 219)(186, 216)(189, 213)(192, 210)(195, 207)(198, 204)(222, 240)(225, 237)(228, 234)
b: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12, 50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22, 40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 158)(62, 157)(63, 156)(64, 155)(65, 154)(66, 153)(67, 152)(68, 151)(69, 150)(70, 149)(71, 148)(72, 147)(73, 146)(74, 145)(75, 144)(76, 143)(77, 142)(78, 141)(79, 140)(80, 139)(81, 138)(82, 137)(83, 136)(84, 135)(85, 134)(86, 133)(87, 132)(88, 131)(89, 130)(90, 129)(91, 128)(92, 127)(93, 126)(94, 125)(95, 124)(96, 123)(97, 122)(98, 121)(99, 180)(100, 179)(101, 178)(102, 177)(103, 176)(104, 175)(105, 174)(106, 173)(107, 172)(108, 171)(109, 170)(110, 169)(111, 168)(112, 167)(113, 166)(114, 165)(115, 164)(116, 163)(117, 162)(118, 161)(119, 160)(120, 159)(181, 221)(182, 220)(183, 219)(184, 218)(185, 217)(186, 216)(187, 215)(188, 214)(189, 213)(190, 212)(191, 211)(192, 210)(193, 209)(194, 208)(195, 207)(196, 206)(197, 205)(198, 204)(199, 203)(200, 202)(222, 240)(223, 239)(224, 238)(225, 237)(226, 236)(227, 235)(228, 234)(229, 233)(230, 232)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 58 ]
240
-1 121 2 60 98
-2 99 1 122 3
-3 100 2 123 4
-4 101 3 124 5
-5 102 4 125 6
-6 103 5 126 7
-7 104 6 127 8
-8 105 7 128 9
-9 106 8 129 10
-10 11 107 9 130
-11 12 108 10 131
-12 11 132 13 109
-13 110 12 133 14
-14 111 13 134 15
-15 112 14 135 16
-16 113 15 136 17
-17 114 16 137 18
-18 115 17 138 19
-19 116 18 139 20
-20 117 19 140 21
-21 22 118 20 141
-22 23 119 21 142
-23 22 143 24 120
-24 23 144 25 61
-25 24 145 26 62
-26 25 146 27 63
-27 26 147 28 64
-28 27 148 29 65
-29 66 28 149 30
-30 67 29 150 31
-31 68 30 151 32
-32 33 69 31 152
-33 34 70 32 153
-34 33 154 35 71
-35 34 155 36 72
-36 35 156 37 73
-37 36 157 38 74
-38 37 158 39 75
-39 38 159 40 76
-40 77 39 160 41
-41 78 40 161 42
-42 79 41 162 43
-43 44 80 42 163
-44 45 81 43 164
-45 44 165 46 82
-46 45 166 47 83
-47 46 167 48 84
-48 47 168 49 85
-49 48 169 50 86
-50 49 170 51 87
-51 88 50 171 52
-52 89 51 172 53
-53 90 52 173 54
-54 55 91 53 174
-55 56 92 54 175
-56 55 176 57 93
-57 56 177 58 94
-58 57 178 59 95
-59 58 179 60 96
-60 1 59 180 97
-61 121 24 184 141
-62 122 25 185 142
-63 143 123 26 186
-64 187 144 124 27
-65 188 145 125 28
-66 189 146 126 29
-67 190 147 127 30
-68 191 148 128 31
-69 192 149 129 32
-70 33 193 150 130
-71 34 194 151 131
-72 132 35 195 152
-73 133 36 196 153
-74 154 134 37 197
-75 198 155 135 38
-76 199 156 136 39
-77 200 157 137 40
-78 201 158 138 41
-79 202 159 139 42
-80 203 160 140 43
-81 44 204 161 141
-82 45 205 162 142
-83 143 46 206 163
-84 144 47 207 164
-85 165 145 48 208
-86 209 166 146 49
-87 210 167 147 50
-88 211 168 148 51
-89 212 169 149 52
-90 213 170 150 53
-91 214 171 151 54
-92 55 215 172 152
-93 56 216 173 153
-94 154 57 217 174
-95 155 58 218 175
-96 176 156 59 219
-97 220 177 157 60
-98 1 221 178 158
-99 2 222 179 159
-100 3 223 180 160
-101 121 4 224 161
-102 122 5 225 162
-103 123 6 226 163
-104 124 7 227 164
-105 165 125 8 228
-106 166 126 9 229
-107 167 127 10 230
-108 11 231 168 128
-109 12 232 169 129
-110 13 233 170 130
-111 14 234 171 131
-112 132 15 235 172
-113 133 16 236 173
-114 134 17 237 174
-115 135 18 238 175
-116 176 136 19 239
-117 177 137 20 240
-118 178 181 138 21
-119 22 179 182 139
-120 23 180 183 140
-121 1 101 181 61
-122 2 102 182 62
-123 3 103 183 63
-124 4 104 184 64
-125 5 105 185 65
-126 66 6 106 186
-127 187 67 7 107
-128 188 68 8 108
-129 189 69 9 109
-130 110 190 70 10
-131 11 111 191 71
-132 12 112 192 72
-133 13 113 193 73
-134 14 114 194 74
-135 15 115 195 75
-136 16 116 196 76
-137 77 17 117 197
-138 198 78 18 118
-139 199 79 19 119
-140 200 80 20 120
-141 201 81 61 21
-142 22 202 82 62
-143 23 203 83 63
-144 24 204 84 64
-145 25 205 85 65
-146 66 26 206 86
-147 67 27 207 87
-148 88 68 28 208
-149 209 89 69 29
-150 210 90 70 30
-151 211 91 71 31
-152 212 92 72 32
-153 33 213 93 73
-154 34 214 94 74
-155 35 215 95 75
-156 36 216 96 76
-157 77 37 217 97
-158 78 38 218 98
-159 99 79 39 219
-160 220 100 80 40
-161 221 101 81 41
-162 222 102 82 42
-163 223 103 83 43
-164 44 224 104 84
-165 45 225 105 85
-166 46 226 106 86
-167 47 227 107 87
-168 88 48 228 108
-169 89 49 229 109
-170 110 90 50 230
-171 231 111 91 51
-172 232 112 92 52
-173 233 113 93 53
-174 234 114 94 54
-175 55 235 115 95
-176 56 236 116 96
-177 57 237 117 97
-178 58 238 118 98
-179 99 59 239 119
-180 100 60 240 120
-181 121 200 222 118
-182 122 201 223 119
-183 123 202 224 120
-184 124 203 225 61
-185 125 204 226 62
-186 126 205 227 63
-187 127 206 228 64
-188 128 207 229 65
-189 66 129 208 230
-190 209 231 67 130
-191 210 232 68 131
-192 132 211 233 69
-193 133 212 234 70
-194 134 213 235 71
-195 135 214 236 72
-196 136 215 237 73
-197 137 216 238 74
-198 138 217 239 75
-199 139 218 240 76
-200 77 181 140 219
-201 220 78 182 141
-202 221 79 183 142
-203 143 222 80 184
-204 144 223 81 185
-205 145 224 82 186
-206 187 146 225 83
-207 188 147 226 84
-208 189 148 227 85
-209 190 149 228 86
-210 191 150 229 87
-211 88 192 151 230
-212 231 89 193 152
-213 232 90 194 153
-214 154 233 91 195
-215 155 234 92 196
-216 156 235 93 197
-217 198 157 236 94
-218 199 158 237 95
-219 200 159 238 96
-220 201 160 239 97
-221 202 161 240 98
-222 99 181 203 162
-223 100 182 204 163
-224 101 183 205 164
-225 165 102 184 206
-226 166 103 185 207
-227 167 104 186 208
-228 187 209 168 105
-229 188 210 169 106
-230 189 211 170 107
-231 190 212 171 108
-232 191 213 172 109
-233 110 192 214 173
-234 111 193 215 174
-235 112 194 216 175
-236 176 113 195 217
-237 177 114 196 218
-238 178 115 197 219
-239 198 220 179 116
-240 199 221 180 117
0

**************