C4graphGraph forms for C4 [ 240, 62 ] = PL(Curtain_30(1,12,1,5,17),[4^30,10^12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 62 ] = PL(Curtain_30(1,12,1,5,17),[4^30,10^12]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {113, 123}, {118, 122}, {115, 125}, {114, 125}, {98, 122}, {99, 123}, {98, 123}, {100, 125}, {102, 127}, {95, 123}, {80, 125}, {74, 127}, {66, 126}, {53, 126}, {50, 127}, {35, 127}, {38, 122}, {31, 126}, {18, 121}, {18, 126}, {20, 122}, {9, 121}, {1, 121}, {6, 124}, {1, 124}, {4, 121}, {2, 124}, {3, 124}, {87, 215}, {4, 133}, {10, 139}, {36, 165}, {43, 170}, {45, 172}, {67, 193}, {13, 142}, {32, 163}, {44, 175}, {91, 216}, {97, 226}, {16, 148}, {71, 195}, {60, 184}, {56, 188}, {25, 157}, {94, 218}, {31, 154}, {37, 160}, {99, 230}, {28, 154}, {74, 204}, {69, 195}, {65, 199}, {94, 216}, {103, 225}, {60, 187}, {102, 225}, {53, 189}, {7, 142}, {71, 206}, {54, 191}, {12, 133}, {15, 134}, {17, 152}, {29, 148}, {41, 160}, {14, 132}, {46, 164}, {49, 187}, {44, 167}, {74, 193}, {68, 207}, {55, 188}, {105, 226}, {109, 230}, {8, 132}, {29, 144}, {82, 223}, {83, 222}, {97, 236}, {5, 139}, {11, 133}, {34, 172}, {85, 219}, {9, 134}, {55, 184}, {20, 155}, {90, 213}, {97, 238}, {8, 152}, {116, 228}, {76, 220}, {64, 208}, {62, 174}, {56, 168}, {27, 139}, {11, 154}, {115, 226}, {65, 208}, {17, 128}, {26, 139}, {36, 181}, {46, 191}, {21, 135}, {115, 225}, {37, 183}, {98, 240}, {112, 226}, {23, 132}, {76, 223}, {91, 200}, {99, 240}, {28, 136}, {66, 214}, {32, 180}, {39, 178}, {54, 163}, {78, 219}, {81, 196}, {85, 192}, {68, 210}, {69, 210}, {119, 224}, {22, 142}, {120, 224}, {67, 219}, {78, 214}, {81, 201}, {113, 233}, {35, 186}, {84, 205}, {112, 233}, {22, 140}, {55, 173}, {3, 152}, {72, 211}, {63, 164}, {84, 207}, {87, 204}, {57, 165}, {5, 152}, {36, 185}, {53, 168}, {90, 199}, {95, 194}, {13, 147}, {60, 162}, {24, 134}, {30, 128}, {47, 177}, {37, 186}, {61, 162}, {10, 170}, {75, 235}, {16, 176}, {19, 178}, {31, 190}, {48, 145}, {50, 147}, {79, 238}, {104, 201}, {111, 206}, {23, 181}, {47, 141}, {79, 236}, {120, 219}, {96, 195}, {104, 203}, {37, 129}, {75, 239}, {64, 228}, {98, 198}, {12, 169}, {70, 227}, {15, 170}, {34, 135}, {40, 142}, {58, 156}, {100, 194}, {48, 151}, {114, 213}, {58, 157}, {51, 148}, {2, 170}, {45, 133}, {77, 228}, {89, 240}, {108, 197}, {110, 199}, {43, 129}, {54, 156}, {29, 182}, {59, 144}, {14, 162}, {117, 217}, {114, 222}, {73, 229}, {55, 155}, {18, 190}, {42, 134}, {110, 194}, {27, 182}, {59, 150}, {41, 132}, {46, 131}, {52, 153}, {77, 224}, {36, 138}, {6, 169}, {24, 183}, {35, 140}, {19, 163}, {118, 198}, {1, 176}, {3, 178}, {80, 225}, {107, 218}, {2, 176}, {23, 165}, {42, 153}, {86, 229}, {52, 128}, {96, 212}, {27, 174}, {111, 218}, {14, 184}, {60, 138}, {25, 175}, {5, 178}, {63, 136}, {7, 176}, {30, 169}, {24, 160}, {26, 162}, {8, 177}, {39, 158}, {83, 234}, {33, 155}, {57, 131}, {40, 146}, {100, 222}, {38, 157}, {93, 230}, {10, 182}, {119, 203}, {62, 130}, {21, 169}, {86, 235}, {116, 201}, {49, 143}, {83, 237}, {93, 227}, {103, 217}, {14, 177}, {118, 201}, {61, 130}, {56, 135}, {33, 158}, {106, 213}, {107, 212}, {108, 211}, {115, 179}, {12, 205}, {65, 128}, {24, 217}, {67, 129}, {104, 171}, {15, 203}, {77, 137}, {25, 221}, {47, 235}, {112, 180}, {113, 181}, {20, 209}, {83, 150}, {86, 147}, {113, 180}, {41, 239}, {73, 143}, {87, 145}, {7, 192}, {116, 179}, {74, 141}, {90, 157}, {93, 154}, {104, 175}, {45, 229}, {100, 172}, {108, 164}, {33, 232}, {57, 240}, {82, 155}, {92, 149}, {94, 151}, {110, 167}, {22, 220}, {71, 141}, {97, 171}, {1, 202}, {76, 135}, {6, 205}, {26, 209}, {39, 236}, {91, 144}, {92, 144}, {117, 185}, {109, 161}, {5, 200}, {69, 136}, {13, 192}, {21, 216}, {25, 212}, {4, 202}, {82, 156}, {9, 198}, {70, 137}, {39, 232}, {110, 161}, {28, 204}, {30, 206}, {105, 185}, {106, 187}, {22, 196}, {64, 146}, {26, 200}, {78, 156}, {81, 131}, {94, 140}, {18, 198}, {64, 148}, {27, 207}, {93, 137}, {50, 231}, {120, 173}, {76, 153}, {71, 146}, {53, 224}, {19, 197}, {85, 131}, {10, 221}, {51, 228}, {91, 140}, {15, 215}, {119, 175}, {51, 235}, {89, 129}, {101, 189}, {73, 147}, {119, 173}, {87, 141}, {105, 179}, {109, 183}, {49, 234}, {66, 153}, {112, 171}, {49, 237}, {51, 239}, {101, 185}, {102, 186}, {72, 149}, {118, 171}, {9, 215}, {120, 166}, {75, 149}, {20, 202}, {2, 221}, {72, 151}, {17, 206}, {34, 194}, {54, 214}, {43, 203}, {84, 180}, {106, 138}, {65, 160}, {68, 166}, {70, 164}, {79, 173}, {81, 179}, {92, 190}, {4, 231}, {68, 167}, {11, 232}, {48, 211}, {89, 186}, {105, 138}, {52, 208}, {117, 145}, {56, 220}, {32, 197}, {59, 222}, {58, 223}, {77, 168}, {8, 238}, {48, 215}, {61, 218}, {86, 177}, {88, 191}, {78, 166}, {96, 136}, {12, 229}, {69, 172}, {107, 130}, {13, 231}, {43, 193}, {82, 184}, {92, 182}, {95, 181}, {101, 143}, {6, 237}, {52, 223}, {11, 231}, {61, 209}, {38, 202}, {40, 196}, {47, 195}, {80, 188}, {7, 234}, {67, 174}, {62, 211}, {32, 205}, {114, 159}, {3, 237}, {41, 199}, {46, 192}, {108, 130}, {58, 213}, {88, 183}, {33, 209}, {101, 149}, {102, 150}, {44, 221}, {62, 207}, {103, 150}, {38, 212}, {73, 187}, {84, 166}, {16, 227}, {63, 204}, {59, 200}, {42, 217}, {50, 193}, {79, 188}, {109, 158}, {28, 232}, {107, 159}, {106, 159}, {72, 190}, {75, 189}, {103, 145}, {30, 233}, {23, 239}, {40, 208}, {80, 168}, {95, 167}, {111, 151}, {31, 230}, {70, 191}, {88, 161}, {16, 234}, {117, 143}, {63, 197}, {34, 216}, {85, 174}, {88, 163}, {90, 161}, {21, 233}, {42, 214}, {89, 165}, {57, 196}, {116, 137}, {99, 158}, {111, 146}, {29, 227}, {44, 210}, {17, 238}, {66, 189}, {19, 236}, {35, 220}, {45, 210}, {96, 159} }>;

(II) A more general form is to represent the graph as the orbit of {113, 123} under the group generated by the following permutations:

a: (2, 4)(3, 20)(5, 33)(6, 38)(7, 9)(8, 55)(10, 11)(12, 25)(13, 15)(14, 79)(16, 18)(17, 82)(19, 61)(21, 90)(22, 24)(23, 80)(26, 39)(27, 28)(29, 31)(30, 58)(32, 107)(34, 110)(35, 37)(36, 115)(40, 42)(41, 56)(43, 50)(44, 45)(46, 48)(47, 120)(49, 118)(51, 53)(54, 111)(57, 103)(59, 99)(60, 97)(62, 63)(64, 66)(65, 76)(67, 74)(68, 69)(70, 72)(71, 78)(73, 104)(75, 77)(81, 117)(83, 98)(84, 96)(85, 87)(86, 119)(88, 94)(89, 102)(91, 109)(92, 93)(95, 100)(101, 116)(106, 112)(113, 114)(121, 176)(122, 237)(123, 222)(124, 202)(125, 181)(126, 148)(127, 129)(128, 223)(130, 197)(131, 145)(132, 188)(133, 221)(134, 142)(135, 199)(136, 207)(137, 149)(138, 226)(139, 232)(140, 183)(141, 219)(143, 201)(144, 230)(146, 214)(147, 203)(150, 240)(151, 191)(152, 155)(153, 208)(154, 182)(156, 206)(157, 169)(158, 200)(159, 180)(160, 220)(161, 216)(162, 236)(163, 218)(164, 211)(165, 225)(166, 195)(167, 172)(168, 239)(170, 231)(171, 187)(173, 177)(174, 204)(175, 229)(178, 209)(179, 185)(184, 238)(189, 228)(190, 227)(192, 215)(196, 217)(198, 234)(205, 212)(213, 233)(224, 235)
b: (3, 16)(5, 29)(6, 7)(8, 51)(9, 38)(12, 13)(14, 75)(15, 25)(17, 64)(18, 20)(19, 70)(21, 22)(24, 90)(26, 92)(30, 40)(31, 33)(32, 46)(34, 35)(37, 110)(39, 93)(42, 58)(43, 44)(45, 50)(48, 107)(53, 55)(57, 113)(60, 101)(61, 72)(66, 82)(67, 68)(69, 74)(77, 79)(81, 112)(84, 85)(87, 96)(89, 95)(97, 116)(100, 102)(103, 114)(106, 117)(121, 202)(122, 198)(123, 240)(124, 176)(125, 225)(126, 155)(127, 172)(128, 208)(129, 167)(130, 211)(131, 180)(132, 239)(133, 231)(134, 157)(135, 220)(136, 204)(137, 236)(138, 185)(139, 182)(140, 216)(141, 195)(142, 169)(143, 187)(144, 200)(145, 159)(146, 206)(147, 229)(148, 152)(149, 162)(150, 222)(151, 218)(153, 223)(154, 232)(156, 214)(158, 230)(160, 199)(161, 183)(163, 191)(164, 197)(165, 181)(166, 219)(168, 188)(170, 221)(171, 201)(173, 224)(174, 207)(175, 203)(177, 235)(178, 227)(179, 226)(184, 189)(186, 194)(190, 209)(192, 205)(193, 210)(196, 233)(212, 215)(213, 217)(228, 238)(234, 237)
c: (1, 3, 49, 16)(2, 6, 83, 7)(4, 5, 73, 29)(8, 101, 93, 20)(9, 19, 106, 64)(10, 12, 59, 13)(11, 26, 86, 92)(14, 75, 31, 33)(15, 32, 114, 40)(17, 117, 70, 38)(18, 39, 60, 51)(21, 102, 85, 44)(22, 43, 84, 100)(23, 53, 99, 55)(24, 54, 90, 52)(25, 30, 103, 46)(27, 45, 91, 50)(28, 61, 47, 72)(34, 35, 67, 68)(36, 77, 98, 79)(37, 78, 110, 76)(41, 66, 109, 82)(42, 88, 58, 65)(48, 63, 107, 71)(56, 89, 120, 95)(57, 119, 113, 80)(62, 69, 94, 74)(81, 104, 112, 115)(87, 108, 96, 111)(97, 105, 116, 118)(121, 178, 187, 148)(122, 238, 185, 137)(123, 188, 165, 224)(124, 237, 234, 176)(125, 196, 203, 180)(126, 158, 184, 239)(127, 174, 210, 216)(128, 217, 191, 157)(129, 166, 194, 220)(130, 195, 151, 204)(131, 175, 233, 225)(132, 189, 230, 155)(133, 200, 147, 182)(134, 163, 213, 208)(135, 186, 219, 167)(136, 218, 141, 211)(138, 228, 198, 236)(139, 229, 144, 231)(140, 193, 207, 172)(142, 170, 205, 222)(143, 227, 202, 152)(145, 164, 212, 206)(146, 215, 197, 159)(149, 154, 209, 177)(150, 192, 221, 169)(153, 183, 156, 199)(160, 214, 161, 223)(162, 235, 190, 232)(168, 240, 173, 181)(171, 226, 179, 201)
d: (1, 2, 10, 27, 62, 108, 63, 28, 11, 4)(3, 43, 26, 85, 107, 70, 69, 31, 12, 9)(5, 67, 61, 46, 96, 93, 45, 18, 6, 15)(7, 25, 29, 68, 72, 32, 87, 39, 50, 20)(8, 89, 60, 81, 114, 77, 34, 66, 30, 24)(13, 38, 16, 44, 92, 84, 48, 19, 74, 33)(14, 57, 106, 116, 100, 53, 21, 42, 17, 37)(22, 58, 64, 110, 75, 113, 117, 97, 102, 55)(23, 36, 105, 115, 80, 56, 76, 52, 65, 41)(35, 82, 40, 90, 51, 95, 101, 112, 103, 79)(47, 99, 73, 118, 83, 119, 91, 78, 111, 88)(49, 104, 59, 120, 94, 54, 71, 109, 86, 98)(121, 124, 170, 139, 174, 130, 164, 136, 154, 133)(122, 234, 175, 144, 166, 151, 163, 141, 158, 147)(123, 143, 171, 150, 173, 140, 156, 146, 161, 235)(125, 168, 135, 153, 128, 160, 132, 165, 138, 179)(126, 169, 134, 152, 129, 162, 131, 159, 137, 172)(127, 155, 142, 157, 148, 167, 149, 180, 145, 236)(176, 221, 182, 207, 211, 197, 204, 232, 231, 202)(177, 240, 187, 201, 222, 224, 216, 214, 206, 183)(178, 193, 209, 192, 212, 227, 210, 190, 205, 215)(181, 185, 226, 225, 188, 220, 223, 208, 199, 239)(184, 196, 213, 228, 194, 189, 233, 217, 238, 186)(191, 195, 230, 229, 198, 237, 203, 200, 219, 218)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 62 ]
240
-1 121 176 124 202
-2 176 221 124 170
-3 178 124 237 152
-4 121 231 133 202
-5 178 200 139 152
-6 124 169 237 205
-7 176 234 192 142
-8 132 177 238 152
-9 121 198 134 215
-10 221 170 182 139
-11 154 231 133 232
-12 133 169 205 229
-13 231 147 192 142
-14 132 177 162 184
-15 134 170 203 215
-16 176 234 148 227
-17 128 238 206 152
-18 121 198 190 126
-19 178 236 163 197
-20 209 122 155 202
-21 233 135 169 216
-22 220 140 196 142
-23 132 165 181 239
-24 134 160 183 217
-25 221 157 212 175
-26 209 200 139 162
-27 182 139 174 207
-28 154 232 136 204
-29 144 148 182 227
-30 233 169 128 206
-31 154 190 126 230
-32 180 205 163 197
-33 209 155 232 158
-34 135 172 194 216
-35 220 127 140 186
-36 165 181 138 185
-37 160 183 129 186
-38 122 157 212 202
-39 232 178 158 236
-40 146 196 142 208
-41 132 199 160 239
-42 134 214 217 153
-43 170 203 193 129
-44 210 221 167 175
-45 133 210 172 229
-46 191 192 131 164
-47 177 235 195 141
-48 145 211 215 151
-49 143 187 234 237
-50 231 147 127 193
-51 235 148 228 239
-52 223 128 153 208
-53 189 168 224 126
-54 156 191 214 163
-55 155 188 173 184
-56 220 188 135 168
-57 165 196 240 131
-58 156 157 223 213
-59 144 200 222 150
-60 187 138 162 184
-61 209 162 130 218
-62 211 130 174 207
-63 136 204 164 197
-64 146 148 228 208
-65 199 160 128 208
-66 189 126 214 153
-67 193 129 174 219
-68 166 210 167 207
-69 210 136 172 195
-70 191 137 227 164
-71 146 195 206 141
-72 211 190 149 151
-73 143 187 147 229
-74 127 193 204 141
-75 189 235 149 239
-76 220 135 223 153
-77 168 224 137 228
-78 166 156 214 219
-79 188 236 238 173
-80 188 168 125 225
-81 179 201 196 131
-82 155 156 223 184
-83 222 234 237 150
-84 166 180 205 207
-85 192 174 131 219
-86 177 147 235 229
-87 145 204 215 141
-88 191 161 183 163
-89 165 129 240 186
-90 199 157 213 161
-91 144 200 216 140
-92 144 190 149 182
-93 154 137 227 230
-94 216 140 151 218
-95 123 167 181 194
-96 212 136 159 195
-97 236 171 226 238
-98 198 122 123 240
-99 123 158 240 230
-100 222 125 172 194
-101 143 189 149 185
-102 225 127 150 186
-103 145 225 150 217
-104 201 203 171 175
-105 179 138 226 185
-106 187 213 159 138
-107 212 159 130 218
-108 211 130 164 197
-109 158 161 183 230
-110 199 167 161 194
-111 146 151 206 218
-112 233 180 171 226
-113 123 233 180 181
-114 222 125 213 159
-115 179 125 225 226
-116 179 201 137 228
-117 143 145 217 185
-118 198 122 201 171
-119 224 203 173 175
-120 166 224 173 219
-121 1 4 18 9
-122 38 118 20 98
-123 99 113 95 98
-124 1 2 3 6
-125 100 80 114 115
-126 66 18 31 53
-127 35 102 50 74
-128 17 30 52 65
-129 67 89 37 43
-130 61 62 107 108
-131 46 57 81 85
-132 23 14 8 41
-133 11 12 45 4
-134 24 15 9 42
-135 34 56 21 76
-136 69 28 63 96
-137 77 70 93 116
-138 36 60 105 106
-139 26 5 27 10
-140 22 35 91 94
-141 47 71 74 87
-142 22 13 7 40
-143 101 49 73 117
-144 91 59 92 29
-145 48 103 117 87
-146 111 71 40 64
-147 13 50 73 86
-148 16 29 51 64
-149 101 92 72 75
-150 102 59 103 83
-151 111 48 72 94
-152 3 5 17 8
-153 66 52 42 76
-154 11 93 28 31
-155 33 55 82 20
-156 78 58 82 54
-157 90 25 58 38
-158 33 99 39 109
-159 114 106 96 107
-160 24 37 41 65
-161 88 110 90 109
-162 14 26 60 61
-163 88 19 32 54
-164 46 70 63 108
-165 23 89 57 36
-166 78 68 84 120
-167 44 110 68 95
-168 77 56 80 53
-169 12 6 30 21
-170 2 15 10 43
-171 112 104 118 97
-172 34 45 100 69
-173 55 79 119 120
-174 67 27 62 85
-175 44 25 104 119
-176 1 2 16 7
-177 14 47 8 86
-178 3 5 39 19
-179 81 115 105 116
-180 112 113 84 32
-181 23 36 113 95
-182 92 27 29 10
-183 88 24 37 109
-184 55 14 60 82
-185 101 36 105 117
-186 89 35 102 37
-187 49 60 73 106
-188 55 56 79 80
-189 66 101 53 75
-190 92 72 18 31
-191 88 46 70 54
-192 13 46 7 85
-193 67 50 74 43
-194 110 34 100 95
-195 47 69 71 96
-196 22 57 81 40
-197 19 63 108 32
-198 18 118 9 98
-199 110 90 41 65
-200 91 26 59 5
-201 81 104 116 118
-202 1 4 38 20
-203 15 104 119 43
-204 28 63 74 87
-205 12 6 84 32
-206 111 71 17 30
-207 68 27 62 84
-208 40 52 64 65
-209 33 26 61 20
-210 44 45 68 69
-211 48 72 62 108
-212 25 38 96 107
-213 90 58 114 106
-214 66 78 42 54
-215 15 48 9 87
-216 34 91 94 21
-217 24 103 117 42
-218 111 61 94 107
-219 67 78 85 120
-220 22 56 35 76
-221 44 2 25 10
-222 100 59 114 83
-223 58 82 52 76
-224 77 53 119 120
-225 80 102 103 115
-226 112 115 105 97
-227 70 16 93 29
-228 77 116 51 64
-229 12 45 73 86
-230 99 93 31 109
-231 11 13 4 50
-232 11 33 28 39
-233 112 113 30 21
-234 16 49 83 7
-235 47 51 75 86
-236 79 39 19 97
-237 3 49 6 83
-238 79 17 8 97
-239 23 51 41 75
-240 99 89 57 98
0

**************