C4graphGraph forms for C4 [ 240, 65 ] = PL(MBr(2,60;11))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 65 ] = PL(MBr(2,60;11)).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {92, 124}, {93, 125}, {92, 125}, {91, 121}, {92, 121}, {91, 124}, {62, 126}, {63, 127}, {62, 127}, {63, 126}, {62, 122}, {62, 123}, {61, 123}, {61, 122}, {43, 127}, {42, 127}, {32, 123}, {32, 124}, {31, 124}, {31, 123}, {13, 125}, {12, 125}, {12, 126}, {13, 126}, {1, 121}, {2, 122}, {1, 122}, {2, 121}, {43, 171}, {58, 186}, {57, 185}, {44, 172}, {83, 211}, {83, 210}, {5, 135}, {84, 214}, {85, 215}, {4, 135}, {58, 185}, {57, 186}, {15, 140}, {84, 215}, {85, 214}, {15, 139}, {18, 150}, {29, 153}, {30, 154}, {19, 150}, {19, 149}, {54, 176}, {33, 167}, {84, 210}, {18, 149}, {55, 176}, {29, 154}, {30, 153}, {32, 167}, {43, 172}, {44, 171}, {84, 211}, {32, 168}, {120, 240}, {86, 222}, {87, 223}, {33, 168}, {86, 223}, {87, 222}, {26, 144}, {27, 144}, {4, 136}, {79, 195}, {86, 218}, {5, 136}, {79, 194}, {86, 219}, {85, 219}, {85, 218}, {35, 178}, {120, 233}, {117, 228}, {51, 162}, {35, 177}, {119, 229}, {118, 228}, {51, 161}, {80, 194}, {80, 195}, {118, 229}, {11, 159}, {120, 236}, {117, 225}, {116, 224}, {27, 143}, {7, 146}, {120, 237}, {117, 224}, {52, 161}, {10, 159}, {23, 130}, {26, 143}, {36, 177}, {7, 145}, {52, 162}, {23, 129}, {36, 178}, {80, 198}, {81, 199}, {80, 199}, {118, 225}, {81, 198}, {39, 191}, {55, 175}, {46, 182}, {82, 202}, {8, 145}, {54, 175}, {47, 182}, {24, 129}, {38, 191}, {82, 203}, {8, 146}, {47, 181}, {24, 130}, {81, 203}, {16, 139}, {119, 236}, {46, 181}, {81, 202}, {16, 140}, {82, 206}, {83, 207}, {82, 207}, {83, 206}, {118, 232}, {119, 233}, {119, 232}, {27, 187}, {113, 209}, {60, 156}, {59, 155}, {28, 188}, {112, 208}, {113, 208}, {111, 204}, {114, 209}, {2, 166}, {46, 138}, {13, 169}, {14, 170}, {34, 134}, {45, 137}, {3, 166}, {113, 212}, {35, 134}, {3, 165}, {115, 213}, {114, 212}, {49, 151}, {17, 183}, {35, 133}, {110, 200}, {111, 201}, {2, 165}, {114, 213}, {60, 155}, {59, 156}, {48, 151}, {46, 137}, {45, 138}, {13, 170}, {14, 169}, {16, 183}, {27, 188}, {28, 187}, {34, 133}, {111, 200}, {16, 184}, {117, 221}, {116, 220}, {48, 152}, {17, 184}, {116, 221}, {49, 152}, {109, 196}, {10, 160}, {115, 217}, {114, 216}, {42, 128}, {110, 196}, {111, 197}, {11, 160}, {115, 216}, {43, 128}, {110, 197}, {108, 192}, {109, 193}, {109, 192}, {116, 217}, {110, 193}, {115, 220}, {90, 234}, {5, 180}, {53, 132}, {21, 164}, {37, 148}, {90, 235}, {6, 180}, {54, 132}, {22, 164}, {38, 148}, {89, 235}, {89, 234}, {9, 189}, {57, 141}, {25, 173}, {41, 157}, {87, 227}, {90, 238}, {91, 239}, {6, 179}, {56, 141}, {54, 131}, {8, 189}, {22, 163}, {24, 173}, {38, 147}, {40, 157}, {87, 226}, {90, 239}, {91, 238}, {5, 179}, {56, 142}, {53, 131}, {8, 190}, {21, 163}, {24, 174}, {37, 147}, {40, 158}, {9, 190}, {57, 142}, {25, 174}, {41, 158}, {112, 201}, {88, 226}, {88, 227}, {63, 131}, {112, 204}, {113, 205}, {63, 130}, {112, 205}, {88, 230}, {89, 231}, {88, 231}, {89, 230}, {11, 203}, {12, 204}, {25, 217}, {26, 218}, {101, 164}, {104, 169}, {50, 240}, {64, 130}, {102, 164}, {103, 165}, {25, 218}, {64, 131}, {51, 240}, {26, 217}, {40, 235}, {102, 165}, {40, 236}, {100, 160}, {101, 161}, {104, 172}, {105, 173}, {101, 160}, {104, 173}, {1, 199}, {65, 135}, {64, 134}, {22, 208}, {11, 204}, {65, 134}, {64, 135}, {12, 203}, {23, 208}, {102, 161}, {66, 138}, {1, 200}, {66, 139}, {65, 139}, {39, 236}, {65, 138}, {103, 172}, {39, 235}, {67, 143}, {66, 142}, {47, 226}, {67, 142}, {66, 143}, {61, 240}, {47, 225}, {102, 168}, {103, 169}, {103, 168}, {61, 237}, {67, 147}, {108, 188}, {109, 189}, {3, 210}, {67, 146}, {48, 225}, {19, 194}, {108, 189}, {3, 209}, {69, 151}, {68, 150}, {48, 226}, {19, 193}, {106, 184}, {107, 185}, {68, 151}, {69, 150}, {95, 140}, {107, 184}, {4, 209}, {20, 193}, {108, 185}, {4, 210}, {68, 146}, {20, 194}, {94, 136}, {95, 137}, {68, 147}, {95, 136}, {107, 188}, {7, 223}, {14, 214}, {23, 207}, {30, 198}, {70, 158}, {71, 159}, {104, 176}, {105, 177}, {6, 223}, {15, 214}, {22, 207}, {31, 198}, {70, 159}, {71, 158}, {93, 132}, {105, 176}, {15, 213}, {31, 197}, {94, 132}, {95, 133}, {14, 213}, {30, 197}, {94, 133}, {106, 177}, {51, 239}, {70, 154}, {58, 230}, {92, 128}, {93, 129}, {50, 239}, {59, 230}, {70, 155}, {93, 128}, {105, 180}, {59, 229}, {69, 155}, {106, 180}, {107, 181}, {58, 229}, {69, 154}, {94, 129}, {106, 181}, {9, 233}, {10, 234}, {41, 201}, {42, 202}, {74, 170}, {74, 171}, {73, 171}, {9, 234}, {56, 219}, {10, 233}, {41, 202}, {42, 201}, {73, 170}, {56, 220}, {71, 163}, {74, 174}, {75, 175}, {71, 162}, {74, 175}, {75, 174}, {6, 224}, {38, 192}, {7, 224}, {39, 192}, {96, 137}, {72, 162}, {55, 220}, {72, 163}, {55, 219}, {96, 140}, {97, 141}, {96, 141}, {72, 166}, {73, 167}, {72, 167}, {73, 166}, {78, 190}, {79, 191}, {96, 144}, {97, 145}, {18, 227}, {50, 195}, {34, 211}, {78, 191}, {79, 190}, {97, 144}, {17, 227}, {49, 195}, {33, 211}, {98, 145}, {28, 232}, {60, 200}, {44, 216}, {78, 186}, {17, 228}, {49, 196}, {45, 216}, {29, 232}, {33, 212}, {78, 187}, {97, 148}, {18, 228}, {50, 196}, {34, 212}, {77, 187}, {98, 148}, {99, 149}, {77, 186}, {98, 149}, {21, 237}, {53, 205}, {37, 221}, {75, 179}, {100, 156}, {101, 157}, {20, 237}, {52, 205}, {36, 221}, {75, 178}, {100, 157}, {20, 238}, {52, 206}, {45, 215}, {29, 231}, {36, 222}, {76, 182}, {77, 183}, {98, 152}, {99, 153}, {21, 238}, {60, 199}, {53, 206}, {28, 231}, {37, 222}, {44, 215}, {76, 183}, {77, 182}, {99, 152}, {100, 153}, {76, 178}, {76, 179}, {99, 156} }>;

(II) A more general form is to represent the graph as the orbit of {92, 124} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 72, 83, 94, 105, 116, 67, 78, 89, 100, 111, 62, 73, 84, 95, 106, 117, 68, 79, 90, 101, 112, 63, 74, 85, 96, 107, 118, 69, 80, 91, 102, 113, 64, 75, 86, 97, 108, 119, 70, 81, 92, 103, 114, 65, 76, 87, 98, 109, 120, 71, 82, 93, 104, 115, 66, 77, 88, 99, 110)(121, 165, 209, 135, 179, 223, 145, 189, 233, 159, 203, 125, 169, 213, 139, 183, 227, 149, 193, 237, 163, 207, 129, 173, 217, 143, 187, 231, 153, 197, 123, 167, 211, 133, 177, 221, 147, 191, 235, 157, 201, 127, 171, 215, 137, 181, 225, 151, 195, 239, 161, 205, 131, 175, 219, 141, 185, 229, 155, 199)(122, 166, 210, 136, 180, 224, 146, 190, 234, 160, 204, 126, 170, 214, 140, 184, 228, 150, 194, 238, 164, 208, 130, 174, 218, 144, 188, 232, 154, 198, 124, 168, 212, 134, 178, 222, 148, 192, 236, 158, 202, 128, 172, 216, 138, 182, 226, 152, 196, 240, 162, 206, 132, 176, 220, 142, 186, 230, 156, 200)
b: (1, 61)(2, 62)(3, 63)(4, 64)(5, 65)(6, 66)(7, 67)(8, 68)(9, 69)(10, 70)(11, 71)(12, 72)(13, 73)(14, 74)(15, 75)(16, 76)(17, 77)(18, 78)(19, 79)(20, 80)(21, 81)(22, 82)(23, 83)(24, 84)(25, 85)(26, 86)(27, 87)(28, 88)(29, 89)(30, 90)(31, 91)(32, 92)(33, 93)(34, 94)(35, 95)(36, 96)(37, 97)(38, 98)(39, 99)(40, 100)(41, 101)(42, 102)(43, 103)(44, 104)(45, 105)(46, 106)(47, 107)(48, 108)(49, 109)(50, 110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58, 118)(59, 119)(60, 120)(121, 123)(125, 167)(126, 166)(127, 165)(128, 168)(129, 211)(130, 210)(131, 209)(132, 212)(134, 136)(137, 177)(138, 180)(139, 179)(140, 178)(141, 221)(142, 224)(143, 223)(144, 222)(145, 147)(149, 191)(150, 190)(151, 189)(152, 192)(153, 235)(154, 234)(155, 233)(156, 236)(158, 160)(161, 201)(162, 204)(163, 203)(164, 202)(169, 171)(173, 215)(174, 214)(175, 213)(176, 216)(182, 184)(185, 225)(186, 228)(187, 227)(188, 226)(193, 195)(197, 239)(198, 238)(199, 237)(200, 240)(206, 208)(217, 219)(230, 232)
c: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12, 50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22, 40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 81)(62, 80)(63, 79)(64, 78)(65, 77)(66, 76)(67, 75)(68, 74)(69, 73)(70, 72)(82, 120)(83, 119)(84, 118)(85, 117)(86, 116)(87, 115)(88, 114)(89, 113)(90, 112)(91, 111)(92, 110)(93, 109)(94, 108)(95, 107)(96, 106)(97, 105)(98, 104)(99, 103)(100, 102)(121, 200)(122, 199)(123, 198)(124, 197)(125, 196)(126, 195)(127, 194)(128, 193)(129, 192)(130, 191)(131, 190)(132, 189)(133, 188)(134, 187)(135, 186)(136, 185)(137, 184)(138, 183)(139, 182)(140, 181)(141, 180)(142, 179)(143, 178)(144, 177)(145, 176)(146, 175)(147, 174)(148, 173)(149, 172)(150, 171)(151, 170)(152, 169)(153, 168)(154, 167)(155, 166)(156, 165)(157, 164)(158, 163)(159, 162)(160, 161)(201, 238)(202, 237)(203, 240)(204, 239)(205, 234)(206, 233)(207, 236)(208, 235)(209, 230)(210, 229)(211, 232)(212, 231)(213, 226)(214, 225)(215, 228)(216, 227)(217, 222)(218, 221)(219, 224)(220, 223)
d: (61, 91)(62, 92)(63, 93)(64, 94)(65, 95)(66, 96)(67, 97)(68, 98)(69, 99)(70, 100)(71, 101)(72, 102)(73, 103)(74, 104)(75, 105)(76, 106)(77, 107)(78, 108)(79, 109)(80, 110)(81, 111)(82, 112)(83, 113)(84, 114)(85, 115)(86, 116)(87, 117)(88, 118)(89, 119)(90, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 65 ]
240
-1 121 122 199 200
-2 121 165 122 166
-3 165 209 166 210
-4 209 210 135 136
-5 135 179 136 180
-6 179 223 180 224
-7 145 146 223 224
-8 145 189 146 190
-9 189 233 190 234
-10 233 234 159 160
-11 159 203 160 204
-12 125 126 203 204
-13 125 169 126 170
-14 169 213 170 214
-15 213 214 139 140
-16 139 183 140 184
-17 183 227 184 228
-18 149 150 227 228
-19 149 193 150 194
-20 193 237 194 238
-21 237 238 163 164
-22 163 207 164 208
-23 129 130 207 208
-24 129 173 130 174
-25 173 217 174 218
-26 143 144 217 218
-27 143 187 144 188
-28 187 231 188 232
-29 154 231 232 153
-30 154 198 153 197
-31 198 123 124 197
-32 123 167 124 168
-33 167 211 168 212
-34 133 134 211 212
-35 133 177 134 178
-36 177 221 178 222
-37 221 222 147 148
-38 147 191 148 192
-39 191 235 192 236
-40 157 158 235 236
-41 157 201 158 202
-42 201 202 127 128
-43 127 171 128 172
-44 171 215 172 216
-45 137 138 215 216
-46 137 181 138 182
-47 181 225 182 226
-48 225 226 151 152
-49 151 195 152 196
-50 195 239 196 240
-51 161 162 239 240
-52 161 205 162 206
-53 132 205 206 131
-54 132 176 131 175
-55 176 220 175 219
-56 220 141 142 219
-57 141 185 142 186
-58 185 229 186 230
-59 155 156 229 230
-60 155 199 156 200
-61 122 123 237 240
-62 122 123 126 127
-63 126 127 130 131
-64 134 135 130 131
-65 134 135 138 139
-66 143 138 139 142
-67 143 146 147 142
-68 146 147 150 151
-69 154 155 150 151
-70 154 155 158 159
-71 158 159 162 163
-72 166 167 162 163
-73 166 167 170 171
-74 170 171 174 175
-75 178 179 174 175
-76 178 179 182 183
-77 187 182 183 186
-78 187 190 191 186
-79 190 191 194 195
-80 198 199 194 195
-81 198 199 202 203
-82 202 203 206 207
-83 210 211 206 207
-84 210 211 214 215
-85 214 215 218 219
-86 222 223 218 219
-87 222 223 226 227
-88 231 226 227 230
-89 231 234 235 230
-90 234 235 238 239
-91 121 124 238 239
-92 121 124 125 128
-93 132 125 128 129
-94 132 133 136 129
-95 133 136 137 140
-96 144 137 140 141
-97 144 145 148 141
-98 145 148 149 152
-99 156 149 152 153
-100 156 157 160 153
-101 157 160 161 164
-102 165 168 161 164
-103 165 168 169 172
-104 176 169 172 173
-105 176 177 180 173
-106 177 180 181 184
-107 188 181 184 185
-108 188 189 192 185
-109 189 192 193 196
-110 200 193 196 197
-111 200 201 204 197
-112 201 204 205 208
-113 209 212 205 208
-114 209 212 213 216
-115 220 213 216 217
-116 220 221 224 217
-117 221 224 225 228
-118 232 225 228 229
-119 232 233 236 229
-120 233 236 237 240
-121 1 2 91 92
-122 1 2 61 62
-123 61 62 31 32
-124 91 92 31 32
-125 12 13 92 93
-126 12 13 62 63
-127 62 63 42 43
-128 92 93 42 43
-129 23 24 93 94
-130 23 24 63 64
-131 63 53 64 54
-132 93 94 53 54
-133 34 35 94 95
-134 34 35 64 65
-135 4 5 64 65
-136 4 5 94 95
-137 45 46 95 96
-138 66 45 46 65
-139 66 15 16 65
-140 15 16 95 96
-141 56 57 96 97
-142 66 56 67 57
-143 66 67 26 27
-144 26 27 96 97
-145 7 8 97 98
-146 67 68 7 8
-147 67 68 37 38
-148 37 38 97 98
-149 99 18 19 98
-150 68 69 18 19
-151 68 69 48 49
-152 99 48 49 98
-153 99 100 29 30
-154 69 70 29 30
-155 69 59 70 60
-156 99 100 59 60
-157 100 101 40 41
-158 70 71 40 41
-159 11 70 71 10
-160 11 100 101 10
-161 101 102 51 52
-162 71 72 51 52
-163 22 71 72 21
-164 22 101 102 21
-165 2 3 102 103
-166 2 3 72 73
-167 33 72 73 32
-168 33 102 103 32
-169 13 14 103 104
-170 13 14 73 74
-171 44 73 74 43
-172 44 103 104 43
-173 24 25 104 105
-174 24 25 74 75
-175 55 74 75 54
-176 55 104 105 54
-177 35 36 105 106
-178 35 36 75 76
-179 5 6 75 76
-180 5 6 105 106
-181 46 47 106 107
-182 77 46 47 76
-183 77 16 17 76
-184 16 17 106 107
-185 57 58 107 108
-186 77 78 57 58
-187 77 78 27 28
-188 27 28 107 108
-189 8 9 108 109
-190 78 79 8 9
-191 78 79 38 39
-192 38 39 108 109
-193 110 19 20 109
-194 79 80 19 20
-195 79 80 49 50
-196 110 49 50 109
-197 110 111 30 31
-198 80 81 30 31
-199 1 80 81 60
-200 110 1 111 60
-201 111 112 41 42
-202 81 82 41 42
-203 11 12 81 82
-204 11 12 111 112
-205 112 113 52 53
-206 82 83 52 53
-207 22 23 82 83
-208 22 23 112 113
-209 3 113 4 114
-210 3 4 83 84
-211 33 34 83 84
-212 33 34 113 114
-213 14 15 114 115
-214 14 15 84 85
-215 44 45 84 85
-216 44 45 114 115
-217 25 26 115 116
-218 25 26 85 86
-219 55 56 85 86
-220 55 56 115 116
-221 36 37 116 117
-222 36 37 86 87
-223 6 7 86 87
-224 6 116 7 117
-225 47 48 117 118
-226 88 47 48 87
-227 88 17 18 87
-228 17 18 117 118
-229 58 59 118 119
-230 88 89 58 59
-231 88 89 28 29
-232 28 29 118 119
-233 9 119 10 120
-234 89 90 9 10
-235 89 90 39 40
-236 39 40 119 120
-237 61 20 21 120
-238 90 91 20 21
-239 90 91 50 51
-240 50 61 51 120
0

**************