[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 71 ] =
UG(ATD[240,29]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {16, 17}, {156, 158}, {225, 227}, {213, 215}, {1, 2}, {144, 147},
{61, 62}, {49, 50}, {40, 43}, {8, 11}, {92, 95}, {1, 5}, {195, 199}, {155, 159},
{3, 7}, {2, 6}, {41, 44}, {96, 101}, {115, 118}, {48, 54}, {208, 214}, {185,
191}, {74, 76}, {42, 45}, {187, 188}, {186, 189}, {58, 61}, {114, 117}, {21,
29}, {22, 30}, {112, 120}, {103, 110}, {231, 238}, {165, 172}, {129, 136}, {50,
56}, {231, 237}, {4, 15}, {166, 173}, {84, 95}, {4, 8}, {214, 218}, {164, 168},
{132, 136}, {3, 14}, {197, 200}, {225, 239}, {228, 234}, {2, 13}, {166, 169},
{19, 28}, {110, 124}, {206, 221}, {77, 89}, {228, 240}, {203, 223}, {163, 183},
{5, 16}, {7, 18}, {97, 119}, {167, 177}, {6, 17}, {203, 220}, {46, 57}, {105,
113}, {202, 210}, {133, 157}, {12, 22}, {8, 19}, {207, 212}, {142, 146}, {9,
20}, {136, 149}, {37, 59}, {10, 21}, {167, 184}, {195, 226}, {200, 233}, {197,
228}, {140, 174}, {204, 238}, {5, 32}, {153, 188}, {15, 42}, {13, 40}, {7, 34},
{22, 48}, {204, 234}, {83, 117}, {23, 49}, {6, 33}, {14, 41}, {26, 51}, {207,
230}, {153, 176}, {31, 54}, {93, 116}, {24, 50}, {152, 178}, {69, 111}, {25,
51}, {87, 125}, {8, 35}, {139, 160}, {12, 39}, {196, 232}, {9, 36}, {200, 229},
{196, 233}, {11, 38}, {26, 52}, {222, 240}, {157, 179}, {27, 53}, {4, 43}, {206,
225}, {148, 187}, {10, 37}, {85, 122}, {64, 112}, {219, 235}, {91, 106}, {221,
236}, {70, 116}, {132, 182}, {138, 185}, {222, 237}, {149, 161}, {66, 119}, {71,
113}, {221, 235}, {80, 102}, {23, 32}, {208, 231}, {83, 106}, {13, 55}, {72,
114}, {21, 47}, {20, 46}, {17, 43}, {91, 97}, {94, 100}, {78, 117}, {219, 224},
{215, 236}, {158, 165}, {135, 186}, {210, 239}, {151, 170}, {18, 44}, {214,
232}, {66, 124}, {19, 45}, {92, 98}, {93, 99}, {147, 211}, {130, 192}, {151,
213}, {150, 212}, {145, 210}, {161, 226}, {2, 70}, {22, 82}, {21, 81}, {20, 80},
{15, 75}, {14, 74}, {13, 73}, {46, 107}, {166, 227}, {11, 77}, {145, 215}, {57,
127}, {31, 88}, {39, 96}, {142, 198}, {30, 87}, {150, 223}, {28, 86}, {24, 83},
{47, 100}, {154, 214}, {155, 215}, {25, 84}, {189, 240}, {50, 127}, {46, 99},
{44, 97}, {27, 85}, {170, 228}, {45, 98}, {159, 208}, {128, 207}, {60, 108},
{190, 238}, {63, 111}, {62, 110}, {61, 109}, {129, 208}, {136, 217}, {33, 115},
{181, 231}, {180, 230}, {56, 107}, {191, 236}, {63, 108}, {137, 218}, {51, 103},
{177, 229}, {133, 209}, {48, 101}, {158, 203}, {61, 104}, {34, 116}, {190, 232},
{36, 115}, {155, 204}, {49, 102}, {157, 197}, {189, 229}, {152, 193}, {133,
223}, {153, 195}, {147, 201}, {16, 76}, {143, 211}, {53, 105}, {52, 104}, {39,
123}, {29, 65}, {19, 79}, {18, 78}, {17, 77}, {55, 106}, {4, 90}, {143, 209},
{28, 67}, {144, 207}, {138, 213}, {59, 90}, {35, 65}, {18, 118}, {138, 238},
{60, 88}, {134, 227}, {131, 229}, {134, 224}, {135, 224}, {176, 216}, {182,
222}, {181, 221}, {180, 220}, {179, 219}, {23, 126}, {176, 217}, {20, 126},
{137, 227}, {10, 97}, {177, 218}, {36, 72}, {131, 239}, {47, 66}, {179, 222},
{175, 194}, {135, 234}, {12, 98}, {174, 192}, {41, 89}, {53, 68}, {168, 217},
{56, 73}, {169, 219}, {182, 196}, {54, 69}, {57, 74}, {6, 114}, {165, 209}, {40,
93}, {191, 202}, {167, 210}, {15, 121}, {187, 205}, {184, 206}, {38, 81}, {175,
216}, {151, 224}, {52, 67}, {32, 89}, {38, 95}, {36, 93}, {34, 91}, {183, 205},
{33, 90}, {154, 225}, {37, 94}, {31, 98}, {35, 92}, {52, 75}, {71, 199}, {56,
185}, {65, 192}, {5, 135}, {69, 199}, {7, 131}, {14, 138}, {57, 190}, {69, 194},
{55, 191}, {29, 148}, {30, 149}, {62, 178}, {70, 202}, {68, 201}, {79, 194},
{77, 192}, {126, 240}, {78, 193}, {62, 174}, {85, 197}, {23, 134}, {58, 171},
{81, 195}, {127, 237}, {41, 186}, {127, 236}, {126, 235}, {82, 196}, {28, 139},
{64, 217}, {120, 226}, {92, 199}, {125, 230}, {64, 220}, {38, 187}, {89, 198},
{43, 139}, {72, 232}, {120, 216}, {108, 206}, {104, 203}, {105, 204}, {122,
223}, {58, 156}, {68, 226}, {107, 205}, {48, 151}, {12, 164}, {42, 130}, {96,
200}, {10, 163}, {49, 152}, {16, 185}, {11, 162}, {51, 153}, {25, 178}, {1,
173}, {35, 143}, {34, 142}, {33, 141}, {32, 140}, {54, 155}, {100, 201}, {53,
154}, {70, 233}, {101, 202}, {123, 212}, {26, 171}, {55, 131}, {125, 201}, {37,
144}, {39, 145}, {27, 172}, {44, 148}, {45, 149}, {42, 147}, {59, 130}, {47,
150}, {123, 194}, {40, 146}, {25, 162}, {124, 193}, {86, 150}, {66, 128}, {123,
184}, {115, 183}, {68, 129}, {112, 181}, {121, 188}, {125, 184}, {112, 182},
{99, 171}, {100, 172}, {101, 173}, {102, 174}, {103, 175}, {118, 190}, {116,
189}, {86, 156}, {30, 211}, {87, 154}, {102, 171}, {31, 209}, {67, 141}, {27,
212}, {79, 128}, {67, 146}, {82, 129}, {103, 180}, {1, 213}, {84, 128}, {90,
140}, {26, 205}, {71, 159}, {76, 148}, {104, 176}, {105, 177}, {3, 218}, {63,
230}, {107, 178}, {109, 180}, {83, 137}, {111, 181}, {121, 163}, {29, 198},
{113, 170}, {124, 160}, {64, 157}, {80, 142}, {122, 164}, {65, 158}, {84, 139},
{108, 179}, {9, 233}, {60, 220}, {94, 188}, {109, 143}, {75, 168}, {9, 237},
{96, 132}, {72, 173}, {119, 146}, {63, 216}, {120, 159}, {3, 234}, {73, 160},
{75, 161}, {80, 186}, {71, 172}, {79, 164}, {73, 162}, {119, 156}, {78, 163},
{76, 162}, {99, 141}, {60, 211}, {109, 130}, {95, 175}, {88, 169}, {85, 167},
{88, 170}, {106, 152}, {24, 235}, {81, 165}, {82, 166}, {113, 133}, {114, 134},
{121, 141}, {24, 239}, {117, 140}, {59, 193}, {91, 160}, {58, 198}, {74, 183},
{86, 168}, {87, 169}, {110, 144}, {111, 145}, {122, 132}, {94, 161}, {118, 137}
}>;
(II) A more general form is to represent the graph as the orbit of {16, 17}
under the group generated by the following permutations:
a: (1, 2)(3, 7)(4, 22)(5, 70)(6, 173)(8, 12)(9, 23)(10, 53)(11, 39)(13, 213)(14,
131)(15, 30)(16, 202)(17, 101)(18, 218)(19, 98)(20, 126)(21, 27)(24, 57)(25,
111)(26, 108)(28, 31)(29, 85)(32, 233)(33, 166)(34, 234)(35, 164)(36, 134)(37,
68)(38, 123)(40, 151)(41, 229)(42, 149)(43, 48)(44, 177)(46, 235)(47, 172)(49,
237)(50, 127)(51, 63)(52, 60)(54, 139)(55, 138)(56, 236)(58, 157)(59, 129)(61,
64)(62, 112)(65, 122)(66, 71)(67, 88)(69, 84)(72, 114)(73, 215)(74, 239)(75,
211)(76, 210)(77, 96)(78, 214)(79, 92)(80, 240)(81, 212)(82, 90)(83, 190)(86,
209)(87, 121)(89, 200)(91, 204)(93, 224)(94, 201)(95, 194)(97, 105)(99,
219)(102, 222)(103, 216)(104, 220)(106, 238)(107, 221)(109, 217)(110, 120)(113,
119)(115, 227)(116, 135)(117, 232)(118, 137)(124, 159)(125, 188)(128, 199)(130,
136)(132, 192)(133, 156)(140, 196)(141, 169)(142, 228)(143, 168)(144, 226)(145,
162)(146, 170)(147, 161)(148, 167)(150, 165)(152, 231)(153, 230)(154, 163)(155,
160)(158, 223)(171, 179)(174, 182)(176, 180)(178, 181)(183, 225)(184, 187)(185,
191)(186, 189)(193, 208)(195, 207)(197, 198)(205, 206) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(4, 11)(6, 16)(7, 20)(10, 26)(12, 31)(13, 32)(14, 36)(15, 38)(18,
46)(19, 35)(21, 52)(22, 54)(23, 55)(25, 59)(27, 64)(28, 65)(29, 67)(30, 69)(33,
76)(34, 80)(37, 51)(39, 88)(40, 89)(41, 93)(42, 95)(43, 77)(44, 99)(45, 92)(47,
104)(49, 106)(50, 83)(53, 112)(56, 117)(57, 118)(58, 119)(60, 123)(61, 66)(62,
124)(63, 125)(68, 120)(70, 135)(71, 136)(72, 138)(73, 140)(74, 115)(75, 81)(78,
107)(79, 143)(82, 155)(84, 130)(85, 157)(86, 158)(87, 111)(90, 162)(91, 102)(94,
153)(96, 170)(97, 171)(100, 176)(101, 151)(103, 144)(105, 182)(108, 184)(109,
128)(113, 132)(114, 185)(116, 186)(121, 187)(122, 133)(126, 131)(127, 137)(129,
159)(134, 191)(139, 192)(141, 148)(145, 169)(146, 198)(147, 175)(149, 199)(150,
203)(154, 181)(160, 174)(161, 195)(163, 205)(164, 209)(165, 168)(166, 215)(167,
179)(172, 217)(173, 213)(177, 222)(178, 193)(180, 207)(194, 211)(196, 204)(200,
228)(201, 216)(202, 224)(210, 219)(212, 220)(214, 231)(218, 237)(221, 225)(227,
236)(229, 240)(232, 238)(233, 234)(235, 239)
c: (2, 173)(4, 12)(5, 213)(6, 101)(7, 218)(8, 98)(10, 27)(11, 31)(13, 166)(14,
234)(15, 164)(16, 151)(17, 48)(18, 177)(19, 45)(20, 237)(21, 172)(22, 43)(23,
236)(25, 60)(26, 64)(28, 149)(29, 71)(30, 139)(32, 215)(33, 96)(34, 214)(35,
92)(36, 233)(37, 212)(38, 209)(39, 90)(40, 82)(41, 204)(42, 79)(44, 105)(46,
222)(47, 100)(49, 221)(50, 235)(51, 220)(52, 217)(53, 97)(54, 77)(55, 227)(56,
219)(57, 240)(58, 120)(59, 123)(61, 216)(62, 63)(65, 199)(66, 201)(67, 136)(68,
119)(69, 192)(70, 72)(73, 169)(74, 228)(75, 168)(76, 170)(78, 167)(80, 231)(81,
165)(83, 239)(84, 211)(85, 163)(86, 161)(87, 160)(88, 162)(89, 155)(91, 154)(93,
196)(94, 150)(95, 143)(99, 182)(102, 181)(103, 180)(104, 176)(106, 225)(107,
179)(108, 178)(109, 175)(110, 230)(111, 174)(112, 171)(113, 148)(114, 202)(115,
200)(116, 232)(117, 210)(118, 229)(121, 122)(124, 125)(126, 127)(128, 147)(129,
146)(130, 194)(131, 137)(132, 141)(133, 187)(134, 191)(135, 138)(140, 145)(142,
208)(144, 207)(152, 206)(153, 203)(156, 226)(157, 205)(158, 195)(159, 198)(183,
197)(184, 193)(185, 224)(186, 238)(188, 223)(189, 190)
C4[ 240, 71 ]
240
-1 2 213 5 173
-2 1 13 70 6
-3 14 234 7 218
-4 90 15 8 43
-5 1 135 16 32
-6 33 2 114 17
-7 34 3 18 131
-8 11 35 4 19
-9 233 36 237 20
-10 37 97 163 21
-11 77 38 8 162
-12 22 39 98 164
-13 55 2 40 73
-14 3 138 41 74
-15 121 4 42 75
-16 5 17 185 76
-17 77 16 6 43
-18 44 78 7 118
-19 45 79 28 8
-20 46 80 126 9
-21 47 81 29 10
-22 12 48 82 30
-23 134 49 126 32
-24 235 50 83 239
-25 178 51 84 162
-26 171 51 205 52
-27 212 172 85 53
-28 67 139 19 86
-29 198 148 21 65
-30 22 211 149 87
-31 88 209 54 98
-32 23 89 5 140
-33 90 115 6 141
-34 91 116 7 142
-35 143 92 8 65
-36 93 115 72 9
-37 144 59 94 10
-38 11 187 81 95
-39 12 123 145 96
-40 13 146 93 43
-41 44 89 14 186
-42 45 15 147 130
-43 4 17 40 139
-44 148 18 41 97
-45 149 19 42 98
-46 99 57 107 20
-47 66 100 150 21
-48 22 101 151 54
-49 23 102 50 152
-50 56 24 49 127
-51 25 26 103 153
-52 67 26 104 75
-53 154 68 27 105
-54 155 69 48 31
-55 13 191 106 131
-56 50 73 107 185
-57 46 190 127 74
-58 198 156 61 171
-59 90 37 193 130
-60 88 220 211 108
-61 58 104 62 109
-62 110 178 61 174
-63 111 216 108 230
-64 220 112 157 217
-65 35 158 192 29
-66 47 124 128 119
-67 146 28 52 141
-68 201 226 129 53
-69 111 199 194 54
-70 2 233 202 116
-71 199 113 159 172
-72 232 36 114 173
-73 56 13 160 162
-74 57 14 183 76
-75 168 15 161 52
-76 16 148 74 162
-77 11 89 192 17
-78 193 18 117 163
-79 128 194 19 164
-80 102 20 142 186
-81 165 38 195 21
-82 22 166 129 196
-83 24 137 106 117
-84 25 95 128 139
-85 122 167 27 197
-86 156 168 28 150
-87 154 125 169 30
-88 169 60 170 31
-89 77 198 41 32
-90 33 4 59 140
-91 34 160 106 97
-92 199 35 95 98
-93 99 36 116 40
-94 100 188 37 161
-95 92 38 84 175
-96 132 101 200 39
-97 44 91 119 10
-98 12 45 92 31
-99 46 93 171 141
-100 47 201 94 172
-101 48 202 96 173
-102 80 49 171 174
-103 110 180 51 175
-104 176 203 61 52
-105 177 113 204 53
-106 55 91 83 152
-107 56 46 178 205
-108 179 60 63 206
-109 143 180 61 130
-110 144 124 103 62
-111 145 69 181 63
-112 181 182 64 120
-113 133 71 170 105
-114 134 6 72 117
-115 33 36 183 118
-116 34 189 70 93
-117 78 114 83 140
-118 190 115 137 18
-119 66 156 146 97
-120 112 159 226 216
-121 188 15 141 163
-122 132 223 85 164
-123 212 39 194 184
-124 66 110 160 193
-125 201 184 87 230
-126 23 235 20 240
-127 57 236 50 237
-128 66 79 84 207
-129 68 136 82 208
-130 59 192 42 109
-131 55 7 239 229
-132 122 136 182 96
-133 209 113 157 223
-134 23 114 224 227
-135 234 224 5 186
-136 132 149 129 217
-137 83 227 118 218
-138 14 213 238 185
-139 28 160 84 43
-140 90 117 174 32
-141 33 99 121 67
-142 198 34 80 146
-143 209 35 211 109
-144 110 37 147 207
-145 111 210 39 215
-146 67 40 119 142
-147 144 211 201 42
-148 44 187 29 76
-149 45 136 161 30
-150 47 212 223 86
-151 48 213 224 170
-152 178 49 193 106
-153 176 188 51 195
-154 214 225 53 87
-155 159 204 215 54
-156 58 158 86 119
-157 133 179 64 197
-158 165 156 203 65
-159 155 71 120 208
-160 91 124 73 139
-161 94 149 226 75
-162 11 25 73 76
-163 121 78 183 10
-164 12 122 79 168
-165 209 81 158 172
-166 169 82 227 173
-167 177 210 85 184
-168 217 75 86 164
-169 88 166 87 219
-170 88 113 151 228
-171 99 58 102 26
-172 165 100 27 71
-173 1 166 101 72
-174 102 192 62 140
-175 103 95 194 216
-176 104 216 217 153
-177 167 105 218 229
-178 25 62 107 152
-179 222 157 108 219
-180 220 103 109 230
-181 231 111 221 112
-182 132 112 222 196
-183 115 205 74 163
-184 123 167 125 206
-185 56 191 16 138
-186 189 80 135 41
-187 188 38 148 205
-188 121 187 94 153
-189 116 229 240 186
-190 232 57 238 118
-191 55 202 236 185
-192 77 130 174 65
-193 78 124 59 152
-194 79 123 69 175
-195 199 81 226 153
-196 232 233 82 182
-197 200 157 85 228
-198 89 58 29 142
-199 69 92 71 195
-200 233 96 229 197
-201 100 68 125 147
-202 210 101 70 191
-203 220 223 158 104
-204 155 234 105 238
-205 187 26 183 107
-206 221 225 184 108
-207 144 212 128 230
-208 231 159 214 129
-209 143 165 133 31
-210 145 167 202 239
-211 143 147 60 30
-212 123 27 150 207
-213 1 138 215 151
-214 154 232 218 208
-215 155 145 213 236
-216 176 63 120 175
-217 176 168 136 64
-218 177 3 137 214
-219 179 169 224 235
-220 180 60 203 64
-221 235 181 236 206
-222 179 182 237 240
-223 122 133 203 150
-224 134 135 151 219
-225 154 227 206 239
-226 68 161 195 120
-227 166 134 137 225
-228 234 170 240 197
-229 177 189 200 131
-230 125 180 63 207
-231 181 237 238 208
-232 190 214 72 196
-233 200 70 9 196
-234 3 135 204 228
-235 221 24 126 219
-236 221 191 127 215
-237 231 222 127 9
-238 231 190 138 204
-239 210 24 225 131
-240 189 222 126 228
0