[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 72 ] =
UG(ATD[240,31]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {144, 145}, {218, 219}, {29, 31}, {232, 234}, {1, 2}, {200, 203},
{112, 115}, {1, 5}, {66, 70}, {27, 31}, {3, 7}, {2, 6}, {96, 100}, {74, 79},
{227, 230}, {147, 150}, {139, 142}, {11, 13}, {235, 237}, {73, 78}, {225, 230},
{208, 215}, {151, 159}, {212, 220}, {179, 187}, {163, 171}, {67, 74}, {134,
143}, {33, 43}, {229, 239}, {215, 221}, {69, 79}, {68, 78}, {213, 222}, {2, 14},
{226, 238}, {150, 154}, {149, 153}, {4, 8}, {3, 15}, {132, 136}, {135, 138},
{196, 201}, {145, 156}, {39, 40}, {134, 137}, {119, 120}, {133, 149}, {168,
186}, {194, 208}, {10, 25}, {200, 219}, {4, 16}, {201, 221}, {65, 85}, {12, 24},
{7, 19}, {6, 18}, {5, 17}, {129, 149}, {141, 152}, {196, 209}, {170, 191}, {35,
53}, {137, 159}, {72, 95}, {79, 88}, {129, 150}, {130, 149}, {65, 89}, {76, 85},
{207, 214}, {175, 182}, {174, 183}, {171, 178}, {78, 87}, {32, 58}, {75, 81},
{65, 91}, {33, 59}, {7, 28}, {77, 86}, {8, 20}, {236, 240}, {140, 144}, {11,
23}, {10, 22}, {9, 21}, {170, 183}, {67, 93}, {10, 21}, {205, 210}, {77, 82},
{75, 84}, {5, 37}, {153, 185}, {6, 38}, {9, 40}, {199, 230}, {155, 186}, {28,
61}, {21, 52}, {19, 50}, {17, 48}, {15, 46}, {13, 44}, {11, 42}, {23, 53}, {30,
60}, {10, 41}, {18, 49}, {14, 45}, {1, 36}, {29, 56}, {18, 55}, {22, 48}, {87,
113}, {12, 43}, {197, 226}, {71, 96}, {30, 57}, {21, 50}, {20, 51}, {6, 46},
{143, 167}, {22, 62}, {138, 160}, {28, 55}, {206, 229}, {80, 123}, {81, 125},
{192, 236}, {136, 164}, {132, 168}, {81, 124}, {199, 234}, {138, 167}, {83,
126}, {24, 54}, {136, 166}, {135, 169}, {8, 39}, {223, 240}, {192, 239}, {138,
165}, {82, 125}, {131, 172}, {221, 237}, {133, 180}, {3, 49}, {77, 127}, {71,
117}, {75, 120}, {218, 238}, {76, 121}, {80, 101}, {217, 239}, {77, 122}, {211,
228}, {153, 161}, {152, 162}, {209, 235}, {155, 161}, {92, 103}, {26, 38}, {152,
164}, {146, 174}, {31, 35}, {30, 34}, {128, 189}, {1, 63}, {206, 240}, {73,
119}, {72, 118}, {30, 32}, {26, 36}, {13, 51}, {16, 47}, {133, 186}, {40, 104},
{164, 228}, {45, 109}, {44, 108}, {43, 107}, {42, 106}, {41, 105}, {148, 213},
{24, 90}, {54, 116}, {37, 103}, {36, 102}, {16, 83}, {169, 237}, {175, 235},
{26, 95}, {157, 216}, {51, 118}, {131, 198}, {34, 100}, {151, 209}, {54, 112},
{35, 101}, {25, 94}, {173, 234}, {50, 117}, {57, 113}, {60, 116}, {59, 115},
{58, 114}, {20, 93}, {172, 229}, {160, 233}, {36, 109}, {130, 203}, {17, 91},
{158, 212}, {134, 205}, {4, 74}, {166, 232}, {158, 208}, {18, 92}, {156, 211},
{173, 226}, {168, 231}, {46, 126}, {22, 71}, {34, 112}, {157, 207}, {41, 123},
{59, 104}, {140, 216}, {189, 233}, {154, 206}, {153, 205}, {15, 90}, {19, 70},
{14, 89}, {180, 227}, {148, 195}, {43, 124}, {62, 102}, {146, 203}, {147, 202},
{37, 127}, {129, 219}, {11, 80}, {145, 202}, {58, 97}, {52, 111}, {142, 210},
{188, 224}, {181, 233}, {180, 232}, {154, 198}, {29, 64}, {177, 236}, {48, 109},
{48, 110}, {139, 213}, {23, 72}, {147, 204}, {128, 223}, {54, 86}, {184, 216},
{56, 88}, {39, 69}, {63, 92}, {185, 218}, {135, 228}, {8, 108}, {131, 231},
{130, 231}, {178, 215}, {163, 197}, {190, 216}, {184, 222}, {9, 110}, {177,
214}, {132, 227}, {7, 111}, {179, 217}, {141, 227}, {162, 204}, {174, 193}, {33,
82}, {49, 66}, {42, 94}, {182, 194}, {147, 231}, {146, 230}, {57, 76}, {144,
229}, {12, 122}, {47, 88}, {17, 104}, {165, 220}, {19, 105}, {176, 202}, {27,
96}, {31, 99}, {148, 232}, {28, 97}, {20, 106}, {63, 65}, {29, 98}, {159, 224},
{94, 222}, {13, 140}, {106, 235}, {38, 164}, {39, 165}, {83, 209}, {4, 135},
{93, 222}, {91, 223}, {3, 134}, {2, 132}, {37, 163}, {103, 225}, {80, 215}, {47,
167}, {68, 204}, {52, 190}, {53, 191}, {102, 236}, {45, 166}, {110, 226}, {85,
196}, {46, 188}, {47, 189}, {63, 172}, {87, 195}, {62, 171}, {45, 187}, {60,
170}, {61, 170}, {82, 197}, {84, 195}, {32, 184}, {49, 168}, {51, 169}, {81,
204}, {89, 198}, {14, 175}, {64, 225}, {60, 157}, {27, 185}, {99, 192}, {53,
144}, {59, 158}, {100, 193}, {111, 202}, {118, 211}, {55, 145}, {105, 207},
{117, 210}, {5, 173}, {105, 193}, {124, 212}, {56, 146}, {101, 207}, {68, 239},
{12, 160}, {69, 234}, {109, 194}, {117, 218}, {118, 217}, {44, 156}, {61, 140},
{114, 195}, {95, 237}, {111, 220}, {123, 200}, {55, 131}, {125, 200}, {127,
201}, {32, 151}, {42, 157}, {41, 158}, {86, 225}, {115, 196}, {99, 219}, {107,
211}, {26, 163}, {108, 213}, {52, 142}, {84, 238}, {106, 208}, {92, 224}, {50,
143}, {56, 133}, {98, 223}, {116, 201}, {120, 197}, {122, 199}, {120, 199},
{121, 198}, {113, 177}, {40, 233}, {73, 136}, {127, 188}, {70, 130}, {83, 155},
{99, 171}, {107, 162}, {75, 129}, {113, 187}, {123, 176}, {76, 128}, {124, 176},
{69, 139}, {98, 172}, {107, 165}, {25, 214}, {66, 141}, {125, 178}, {62, 238},
{101, 183}, {108, 190}, {114, 161}, {115, 160}, {78, 154}, {102, 179}, {119,
162}, {23, 192}, {90, 141}, {126, 169}, {67, 155}, {68, 156}, {103, 191}, {121,
161}, {24, 193}, {84, 142}, {25, 194}, {9, 212}, {61, 224}, {16, 205}, {96,
189}, {98, 191}, {104, 182}, {97, 190}, {86, 183}, {88, 185}, {122, 152}, {85,
182}, {89, 186}, {95, 188}, {119, 148}, {114, 150}, {94, 187}, {110, 139}, {35,
203}, {58, 210}, {97, 137}, {15, 228}, {27, 240}, {100, 143}, {116, 159}, {66,
174}, {67, 175}, {64, 173}, {91, 181}, {121, 151}, {87, 184}, {44, 220}, {112,
128}, {34, 214}, {64, 181}, {70, 176}, {71, 177}, {57, 206}, {126, 137}, {72,
178}, {73, 179}, {79, 181}, {93, 166}, {33, 221}, {90, 167}, {74, 180}, {38,
217} }>;
(II) A more general form is to represent the graph as the orbit of {144, 145}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 12)(6, 17)(7, 21)(8, 24)(10, 28)(11, 30)(13, 34)(14, 37)(15,
40)(16, 43)(18, 48)(19, 52)(20, 54)(22, 55)(23, 57)(25, 61)(26, 65)(27, 68)(29,
73)(31, 78)(32, 80)(33, 83)(35, 87)(36, 63)(38, 91)(39, 90)(41, 97)(42, 60)(44,
100)(45, 103)(46, 104)(47, 107)(49, 110)(50, 111)(51, 112)(53, 113)(56, 119)(58,
123)(59, 126)(62, 131)(64, 136)(66, 139)(67, 77)(69, 141)(70, 142)(71, 145)(72,
76)(74, 122)(75, 149)(79, 152)(81, 153)(82, 155)(84, 130)(85, 95)(86, 93)(88,
162)(89, 163)(92, 109)(94, 170)(96, 156)(98, 179)(99, 154)(101, 184)(102,
172)(105, 190)(106, 116)(108, 193)(114, 200)(115, 169)(117, 202)(118, 128)(120,
133)(121, 178)(124, 205)(125, 161)(127, 175)(132, 173)(134, 212)(135, 160)(137,
158)(140, 214)(143, 220)(144, 177)(146, 148)(147, 218)(150, 219)(151, 215)(159,
208)(164, 181)(165, 167)(166, 225)(168, 226)(171, 198)(174, 213)(176, 210)(180,
199)(182, 188)(183, 222)(185, 204)(186, 197)(187, 191)(189, 211)(192, 206)(194,
224)(195, 203)(196, 237)(201, 235)(207, 216)(209, 221)(217, 223)(227, 234)(228,
233)(229, 236)(230, 232)(231, 238)(239, 240) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 36)(3, 10)(4, 11)(5, 63)(6, 109)(7, 21)(8, 13)(9, 28)(12, 30)(14, 26)(15,
25)(16, 80)(17, 92)(18, 48)(19, 50)(20, 51)(22, 49)(23, 74)(24, 34)(27, 146)(31,
56)(32, 43)(33, 151)(35, 88)(37, 65)(38, 45)(39, 140)(40, 61)(41, 134)(42,
135)(44, 108)(46, 194)(47, 101)(52, 111)(53, 79)(54, 112)(55, 110)(57, 122)(58,
124)(59, 159)(60, 160)(62, 168)(64, 98)(66, 71)(67, 72)(68, 148)(69, 144)(70,
117)(75, 150)(76, 77)(78, 119)(81, 114)(82, 121)(83, 215)(84, 147)(85, 127)(86,
128)(87, 162)(89, 163)(90, 214)(91, 103)(93, 118)(94, 228)(95, 175)(96, 174)(97,
212)(99, 133)(100, 193)(102, 132)(104, 224)(105, 143)(106, 169)(107, 184)(113,
152)(115, 116)(120, 154)(123, 205)(125, 161)(126, 208)(130, 218)(131, 226)(136,
179)(137, 158)(138, 157)(139, 145)(141, 177)(142, 202)(149, 219)(153, 200)(155,
178)(156, 213)(164, 187)(165, 216)(166, 217)(167, 207)(170, 233)(171, 186)(172,
173)(176, 210)(180, 192)(181, 191)(182, 188)(183, 189)(185, 203)(190, 220)(195,
204)(196, 201)(197, 198)(199, 206)(209, 221)(211, 222)(223, 225)(227, 236)(229,
234)(230, 240)(231, 238)(232, 239)(235, 237)
c: (1, 2, 6, 18, 49, 3, 7, 19, 50, 21, 10, 22, 48, 109, 36)(4, 13, 35, 88, 8,
11, 31, 79, 20, 23, 29, 74, 51, 53, 56)(5, 14, 38, 92, 168, 15, 28, 70, 143, 52,
41, 71, 110, 194, 102)(9, 25, 62, 17, 45, 26, 63, 132, 46, 55, 66, 134, 111,
105, 117)(12, 32, 81, 112, 195, 33, 57, 120, 196, 78, 77, 121, 162, 116,
150)(16, 44, 101, 185, 39, 42, 99, 181, 93, 72, 98, 180, 169, 144, 146)(24, 58,
124, 34, 84, 59, 113, 197, 85, 73, 127, 198, 152, 159, 147)(27, 69, 106, 192,
64, 67, 118, 191, 133, 135, 140, 203, 47, 108, 80)(30, 75, 115, 87, 82, 76, 119,
201, 154, 122, 151, 204, 54, 114, 43)(37, 89, 164, 224, 231, 90, 97, 176, 100,
142, 158, 177, 226, 182, 179)(40, 94, 171, 91, 166, 95, 172, 227, 126, 145, 174,
205, 220, 207, 218)(60, 129, 160, 184, 125, 128, 148, 221, 206, 199, 209, 68,
86, 161, 107)(61, 130, 167, 190, 123, 96, 139, 208, 236, 173, 175, 217, 103,
186, 228)(65, 136, 188, 131, 141, 137, 202, 193, 210, 212, 214, 238, 104, 187,
163)(83, 156, 183, 153, 165, 157, 219, 233, 222, 178, 223, 232, 237, 229,
230)(138, 216, 200, 189, 213, 215, 240, 234, 235, 239, 225, 155, 211, 170,
149)
C4[ 240, 72 ]
240
-1 2 36 5 63
-2 132 1 14 6
-3 134 15 49 7
-4 135 16 8 74
-5 1 37 17 173
-6 2 46 38 18
-7 111 3 28 19
-8 4 39 20 108
-9 110 212 40 21
-10 22 25 41 21
-11 23 13 80 42
-12 122 24 160 43
-13 11 44 51 140
-14 45 89 2 175
-15 46 90 3 228
-16 47 4 83 205
-17 91 48 5 104
-18 55 92 49 6
-19 70 50 105 7
-20 93 51 106 8
-21 50 52 9 10
-22 48 71 62 10
-23 11 192 72 53
-24 12 90 193 54
-25 214 94 194 10
-26 36 38 95 163
-27 96 31 185 240
-28 55 61 7 97
-29 56 31 64 98
-30 34 57 60 32
-31 99 35 27 29
-32 58 30 151 184
-33 221 59 82 43
-34 100 112 214 30
-35 101 203 31 53
-36 1 102 26 109
-37 103 5 127 163
-38 26 6 217 164
-39 165 69 40 8
-40 233 104 39 9
-41 123 158 105 10
-42 11 157 94 106
-43 33 12 124 107
-44 220 13 156 108
-45 187 166 14 109
-46 188 15 126 6
-47 88 167 189 16
-48 22 110 17 109
-49 66 3 168 18
-50 143 117 19 21
-51 13 169 118 20
-52 111 190 21 142
-53 23 144 35 191
-54 24 112 116 86
-55 145 28 18 131
-56 88 133 146 29
-57 113 30 206 76
-58 210 114 97 32
-59 33 158 104 115
-60 157 170 116 30
-61 224 170 28 140
-62 22 102 171 238
-63 1 92 172 65
-64 181 225 29 173
-65 89 91 63 85
-66 70 49 141 174
-67 155 93 74 175
-68 78 156 204 239
-69 79 234 39 139
-70 66 176 19 130
-71 22 177 117 96
-72 23 178 95 118
-73 78 179 136 119
-74 67 79 4 180
-75 81 84 129 120
-76 121 57 128 85
-77 122 82 127 86
-78 154 68 73 87
-79 88 69 181 74
-80 11 101 123 215
-81 124 125 204 75
-82 33 77 125 197
-83 209 155 16 126
-84 238 195 75 142
-85 182 196 65 76
-86 77 225 183 54
-87 78 113 184 195
-88 56 79 47 185
-89 198 14 65 186
-90 24 167 15 141
-91 223 181 17 65
-92 103 224 18 63
-93 67 166 222 20
-94 187 222 25 42
-95 188 26 72 237
-96 100 189 27 71
-97 58 190 137 28
-98 223 191 29 172
-99 192 171 31 219
-100 143 34 193 96
-101 35 80 183 207
-102 36 179 236 62
-103 37 92 191 225
-104 59 17 182 40
-105 193 19 41 207
-106 235 20 42 208
-107 165 211 162 43
-108 44 190 213 8
-109 45 36 48 194
-110 48 226 139 9
-111 220 202 7 52
-112 34 115 128 54
-113 187 177 57 87
-114 58 150 161 195
-115 112 59 160 196
-116 201 60 159 54
-117 210 71 50 218
-118 211 72 51 217
-119 148 73 162 120
-120 199 75 119 197
-121 198 161 151 76
-122 77 12 199 152
-123 176 200 80 41
-124 176 212 81 43
-125 178 200 81 82
-126 46 169 137 83
-127 77 188 201 37
-128 112 189 223 76
-129 149 150 75 219
-130 231 70 203 149
-131 55 198 231 172
-132 2 168 136 227
-133 56 180 149 186
-134 143 3 137 205
-135 4 169 138 228
-136 132 166 73 164
-137 134 126 159 97
-138 165 167 135 160
-139 110 69 213 142
-140 144 13 61 216
-141 66 90 227 152
-142 210 84 139 52
-143 100 134 167 50
-144 145 140 53 229
-145 55 144 156 202
-146 56 203 174 230
-147 231 202 204 150
-148 232 213 195 119
-149 133 129 130 153
-150 154 114 147 129
-151 121 209 159 32
-152 122 162 141 164
-153 149 161 205 185
-154 198 78 150 206
-155 67 83 161 186
-156 44 68 145 211
-157 60 216 42 207
-158 212 59 41 208
-159 224 137 116 151
-160 12 233 115 138
-161 121 155 114 153
-162 204 107 119 152
-163 26 37 171 197
-164 136 38 228 152
-165 220 39 138 107
-166 45 232 136 93
-167 143 90 47 138
-168 132 231 49 186
-169 135 126 237 51
-170 191 60 61 183
-171 99 178 62 163
-172 63 229 98 131
-173 234 5 226 64
-174 66 146 193 183
-175 67 14 235 182
-176 123 124 70 202
-177 113 71 214 236
-178 125 72 171 215
-179 187 102 73 217
-180 133 232 227 74
-181 79 233 91 64
-182 104 194 85 175
-183 101 170 86 174
-184 222 216 32 87
-185 88 27 218 153
-186 89 133 155 168
-187 45 113 179 94
-188 46 224 127 95
-189 233 47 128 96
-190 216 52 97 108
-191 103 170 53 98
-192 99 23 236 239
-193 100 24 105 174
-194 25 182 109 208
-195 114 148 84 87
-196 209 201 115 85
-197 82 226 163 120
-198 121 154 89 131
-199 122 234 120 230
-200 123 125 203 219
-201 221 116 127 196
-202 176 111 145 147
-203 35 200 146 130
-204 68 81 147 162
-205 210 134 16 153
-206 154 57 229 240
-207 101 157 214 105
-208 158 215 106 194
-209 235 83 151 196
-210 58 117 205 142
-211 156 107 118 228
-212 220 124 158 9
-213 222 148 139 108
-214 34 177 25 207
-215 221 178 80 208
-216 157 190 140 184
-217 179 38 118 239
-218 117 238 185 219
-219 99 200 129 218
-220 44 165 111 212
-221 33 201 215 237
-222 213 93 94 184
-223 91 128 240 98
-224 188 92 159 61
-225 103 64 86 230
-226 110 238 173 197
-227 132 180 141 230
-228 211 135 15 164
-229 144 172 206 239
-230 199 146 225 227
-231 168 147 130 131
-232 166 234 180 148
-233 189 181 160 40
-234 199 232 69 173
-235 209 237 106 175
-236 177 102 192 240
-237 221 169 235 95
-238 226 62 84 218
-239 68 192 217 229
-240 223 27 236 206
0