C4graphGraph forms for C4 [ 240, 74 ] = UG(ATD[240,40])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 74 ] = UG(ATD[240,40]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {217, 219}, {228, 230}, {1, 2}, {204, 207}, {32, 35}, {1, 5}, {233, 237}, {210, 214}, {155, 159}, {58, 62}, {3, 7}, {2, 6}, {235, 238}, {10, 12}, {234, 236}, {57, 63}, {49, 55}, {26, 29}, {104, 111}, {70, 78}, {215, 223}, {192, 200}, {69, 76}, {114, 123}, {130, 139}, {133, 140}, {3, 9}, {192, 202}, {181, 191}, {4, 15}, {225, 234}, {70, 77}, {2, 14}, {227, 239}, {4, 8}, {113, 125}, {114, 127}, {208, 221}, {193, 204}, {183, 185}, {177, 190}, {231, 232}, {228, 235}, {209, 222}, {134, 150}, {196, 212}, {9, 24}, {200, 217}, {13, 28}, {10, 25}, {44, 56}, {134, 146}, {5, 16}, {229, 240}, {11, 30}, {7, 18}, {32, 54}, {206, 216}, {197, 211}, {6, 17}, {205, 218}, {203, 220}, {201, 208}, {13, 23}, {8, 19}, {75, 80}, {38, 61}, {3, 31}, {170, 182}, {169, 181}, {73, 85}, {9, 20}, {11, 22}, {4, 26}, {160, 190}, {10, 21}, {201, 214}, {96, 127}, {100, 123}, {22, 54}, {30, 62}, {17, 48}, {25, 56}, {94, 127}, {23, 53}, {211, 240}, {5, 33}, {7, 35}, {6, 34}, {199, 226}, {205, 232}, {14, 40}, {203, 237}, {202, 236}, {66, 100}, {23, 49}, {22, 48}, {15, 41}, {91, 125}, {80, 119}, {87, 112}, {69, 109}, {151, 191}, {83, 123}, {82, 122}, {81, 121}, {70, 110}, {12, 38}, {195, 233}, {25, 51}, {24, 50}, {13, 39}, {207, 228}, {8, 36}, {156, 176}, {85, 121}, {84, 120}, {158, 179}, {198, 235}, {11, 37}, {74, 100}, {27, 53}, {26, 52}, {24, 55}, {146, 189}, {209, 225}, {223, 239}, {215, 231}, {213, 229}, {137, 184}, {221, 236}, {216, 233}, {134, 180}, {138, 184}, {70, 117}, {141, 185}, {143, 187}, {142, 186}, {12, 57}, {219, 238}, {11, 61}, {133, 179}, {133, 178}, {139, 188}, {65, 121}, {19, 42}, {16, 42}, {218, 224}, {27, 33}, {21, 47}, {20, 46}, {17, 43}, {128, 186}, {1, 58}, {212, 239}, {135, 188}, {64, 124}, {210, 238}, {74, 118}, {69, 120}, {84, 105}, {18, 44}, {220, 226}, {206, 240}, {158, 160}, {19, 45}, {3, 67}, {62, 126}, {132, 196}, {142, 204}, {143, 205}, {25, 90}, {51, 119}, {150, 210}, {1, 68}, {149, 208}, {35, 101}, {171, 237}, {153, 223}, {141, 203}, {131, 197}, {15, 72}, {150, 209}, {129, 198}, {130, 197}, {56, 112}, {155, 211}, {154, 210}, {14, 71}, {157, 212}, {149, 220}, {39, 110}, {37, 108}, {41, 99}, {175, 229}, {27, 80}, {43, 103}, {160, 236}, {59, 119}, {28, 81}, {175, 226}, {173, 224}, {47, 98}, {30, 83}, {46, 96}, {173, 227}, {47, 97}, {13, 66}, {174, 225}, {161, 238}, {60, 115}, {29, 82}, {59, 107}, {186, 234}, {60, 108}, {56, 105}, {183, 230}, {180, 229}, {147, 194}, {48, 98}, {180, 230}, {162, 240}, {143, 221}, {53, 103}, {52, 102}, {49, 99}, {57, 106}, {181, 230}, {176, 227}, {50, 100}, {141, 219}, {51, 101}, {133, 211}, {179, 228}, {183, 224}, {18, 74}, {153, 193}, {152, 192}, {144, 200}, {55, 111}, {53, 109}, {23, 79}, {22, 78}, {21, 77}, {20, 76}, {19, 75}, {16, 73}, {190, 231}, {151, 206}, {29, 68}, {148, 207}, {156, 199}, {28, 64}, {36, 120}, {6, 91}, {54, 107}, {54, 104}, {148, 202}, {144, 206}, {31, 64}, {159, 192}, {40, 72}, {27, 122}, {191, 222}, {182, 215}, {161, 195}, {46, 77}, {182, 213}, {167, 196}, {41, 76}, {172, 201}, {142, 232}, {8, 96}, {164, 204}, {61, 85}, {47, 71}, {29, 113}, {169, 197}, {31, 114}, {171, 198}, {34, 79}, {36, 74}, {10, 123}, {178, 195}, {36, 86}, {45, 95}, {44, 94}, {41, 91}, {40, 90}, {37, 87}, {39, 84}, {172, 223}, {168, 219}, {60, 79}, {32, 84}, {163, 215}, {162, 214}, {161, 213}, {60, 72}, {45, 89}, {37, 80}, {183, 194}, {171, 222}, {169, 220}, {42, 92}, {52, 66}, {43, 93}, {33, 86}, {170, 221}, {152, 239}, {34, 85}, {24, 97}, {51, 73}, {189, 199}, {57, 67}, {58, 65}, {174, 213}, {155, 224}, {50, 78}, {187, 199}, {166, 218}, {164, 216}, {59, 71}, {4, 121}, {167, 218}, {163, 222}, {158, 227}, {156, 225}, {38, 88}, {39, 89}, {157, 226}, {166, 217}, {59, 186}, {58, 184}, {69, 198}, {106, 233}, {2, 132}, {16, 151}, {20, 147}, {95, 216}, {17, 152}, {9, 131}, {97, 235}, {18, 153}, {28, 145}, {40, 185}, {46, 187}, {55, 162}, {38, 190}, {14, 146}, {93, 193}, {63, 159}, {116, 212}, {32, 130}, {31, 188}, {26, 188}, {33, 135}, {21, 178}, {34, 136}, {35, 137}, {125, 214}, {63, 142}, {91, 234}, {92, 237}, {62, 141}, {12, 184}, {124, 200}, {82, 231}, {127, 202}, {94, 232}, {111, 217}, {126, 201}, {7, 189}, {49, 139}, {48, 138}, {30, 165}, {63, 132}, {112, 203}, {61, 128}, {124, 193}, {15, 177}, {50, 140}, {122, 196}, {124, 194}, {87, 151}, {88, 152}, {89, 153}, {90, 154}, {93, 156}, {95, 158}, {126, 191}, {67, 129}, {72, 138}, {98, 160}, {99, 161}, {66, 129}, {94, 157}, {109, 174}, {126, 189}, {68, 128}, {98, 166}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {81, 148}, {83, 150}, {102, 163}, {116, 177}, {77, 139}, {92, 154}, {112, 182}, {118, 176}, {119, 177}, {5, 194}, {82, 149}, {92, 155}, {120, 178}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {96, 173}, {64, 143}, {73, 134}, {65, 144}, {105, 187}, {88, 140}, {68, 145}, {86, 131}, {107, 179}, {108, 180}, {117, 172}, {75, 145}, {111, 181}, {113, 171}, {116, 174}, {117, 175}, {65, 154}, {78, 146}, {79, 147}, {76, 145}, {86, 136}, {87, 137}, {89, 135}, {110, 176}, {114, 172}, {115, 173}, {45, 205}, {125, 157}, {101, 132}, {71, 165}, {118, 148}, {115, 144}, {42, 207}, {118, 147}, {67, 165}, {103, 128}, {106, 130}, {101, 140}, {104, 129}, {102, 136}, {122, 138}, {75, 185}, {113, 131}, {115, 135}, {90, 175}, {99, 149}, {52, 195}, {95, 168}, {81, 168}, {83, 170}, {93, 167}, {43, 208}, {88, 164}, {116, 136}, {117, 137}, {44, 209}, {97, 159} }>;

(II) A more general form is to represent the graph as the orbit of {217, 219} under the group generated by the following permutations:

a: (2, 58)(4, 79)(5, 68)(6, 65)(7, 67)(8, 23)(9, 31)(10, 78)(11, 51)(12, 146)(13, 36)(14, 184)(15, 60)(16, 128)(17, 154)(18, 129)(19, 53)(20, 188)(21, 70)(22, 25)(24, 114)(26, 147)(27, 75)(28, 86)(29, 194)(30, 101)(32, 105)(33, 145)(34, 121)(35, 165)(37, 119)(38, 134)(39, 120)(40, 138)(41, 115)(42, 103)(43, 92)(44, 104)(45, 109)(46, 139)(47, 117)(48, 90)(49, 96)(50, 123)(52, 118)(54, 56)(55, 127)(57, 189)(59, 87)(61, 73)(62, 132)(63, 126)(64, 131)(66, 74)(69, 89)(71, 137)(76, 135)(81, 136)(82, 183)(83, 140)(88, 150)(91, 144)(93, 237)(94, 111)(95, 174)(97, 172)(98, 175)(99, 173)(102, 148)(106, 199)(107, 112)(108, 177)(110, 178)(113, 124)(116, 168)(122, 185)(125, 200)(130, 187)(133, 170)(141, 196)(142, 191)(143, 197)(149, 224)(151, 186)(152, 210)(153, 198)(155, 208)(156, 233)(157, 217)(158, 213)(159, 201)(160, 229)(161, 227)(162, 202)(163, 207)(164, 209)(166, 226)(167, 203)(169, 205)(171, 193)(176, 195)(179, 182)(180, 190)(181, 232)(192, 214)(204, 222)(206, 234)(211, 221)(212, 219)(215, 228)(216, 225)(218, 220)(223, 235)(230, 231)(236, 240)(238, 239)
b: (1, 2)(3, 9)(4, 22)(5, 132)(6, 58)(7, 131)(8, 54)(10, 23)(11, 15)(12, 79)(13, 21)(14, 68)(16, 196)(17, 65)(18, 197)(19, 107)(20, 67)(24, 31)(25, 53)(26, 78)(27, 51)(28, 47)(29, 146)(30, 41)(32, 36)(33, 101)(34, 184)(35, 86)(37, 177)(38, 60)(39, 178)(40, 128)(42, 167)(43, 154)(44, 169)(45, 179)(46, 129)(48, 121)(49, 123)(50, 188)(52, 70)(55, 114)(56, 109)(57, 147)(59, 75)(61, 72)(62, 91)(63, 194)(64, 97)(66, 77)(69, 105)(71, 145)(73, 122)(74, 130)(76, 165)(80, 119)(81, 98)(82, 134)(83, 99)(84, 120)(85, 138)(87, 116)(88, 115)(89, 133)(90, 103)(92, 93)(94, 181)(95, 158)(96, 104)(100, 139)(102, 117)(106, 118)(108, 190)(110, 195)(111, 127)(112, 174)(113, 189)(124, 159)(125, 126)(135, 140)(136, 137)(141, 234)(142, 183)(143, 235)(144, 152)(148, 166)(149, 150)(151, 212)(153, 211)(155, 193)(156, 237)(157, 191)(160, 168)(161, 170)(162, 172)(163, 175)(164, 173)(171, 199)(176, 233)(180, 231)(182, 213)(185, 186)(187, 198)(192, 200)(201, 214)(202, 217)(203, 225)(204, 224)(205, 228)(206, 239)(207, 218)(208, 210)(209, 220)(215, 229)(216, 227)(219, 236)(221, 238)(222, 226)(223, 240)(230, 232)
c: (2, 5)(4, 11)(6, 16)(7, 9)(8, 22)(10, 13)(12, 28)(14, 33)(15, 37)(17, 42)(18, 24)(19, 48)(20, 35)(21, 39)(23, 25)(26, 30)(27, 40)(29, 62)(31, 67)(32, 46)(34, 73)(36, 78)(38, 81)(41, 87)(43, 92)(44, 55)(45, 98)(47, 89)(49, 56)(50, 74)(51, 79)(52, 83)(53, 90)(54, 96)(57, 64)(58, 68)(59, 115)(60, 119)(61, 121)(63, 124)(65, 128)(66, 123)(69, 117)(70, 120)(71, 135)(72, 80)(75, 138)(76, 137)(77, 84)(82, 141)(86, 146)(88, 148)(91, 151)(93, 155)(94, 111)(95, 160)(97, 153)(99, 112)(101, 147)(102, 150)(103, 154)(104, 127)(105, 139)(106, 143)(107, 173)(108, 177)(109, 175)(110, 178)(113, 126)(114, 129)(116, 180)(118, 140)(122, 185)(125, 191)(130, 187)(131, 189)(132, 194)(133, 176)(134, 136)(142, 200)(144, 186)(145, 184)(149, 203)(152, 207)(156, 211)(157, 181)(159, 193)(161, 182)(162, 209)(163, 210)(164, 202)(165, 188)(166, 205)(167, 224)(168, 190)(169, 226)(170, 195)(171, 201)(172, 198)(174, 229)(179, 227)(183, 196)(192, 204)(197, 199)(206, 234)(208, 237)(212, 230)(214, 222)(215, 238)(216, 236)(217, 232)(219, 231)(221, 233)(223, 235)(225, 240)(228, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 74 ]
240
-1 2 68 58 5
-2 132 1 14 6
-3 67 7 9 31
-4 121 15 26 8
-5 33 1 16 194
-6 34 2 91 17
-7 35 189 3 18
-8 36 4 19 96
-9 24 3 20 131
-10 12 123 25 21
-11 22 37 61 30
-12 57 38 184 10
-13 66 23 28 39
-14 2 146 71 40
-15 177 4 72 41
-16 5 73 151 42
-17 48 6 152 43
-18 44 7 74 153
-19 45 8 42 75
-20 46 147 9 76
-21 77 178 47 10
-22 11 78 48 54
-23 13 79 49 53
-24 55 50 9 97
-25 56 90 51 10
-26 188 4 29 52
-27 33 122 80 53
-28 13 145 81 64
-29 68 113 26 82
-30 11 165 83 62
-31 188 3 114 64
-32 35 84 130 54
-33 135 5 27 86
-34 79 136 6 85
-35 101 137 7 32
-36 8 74 86 120
-37 11 80 108 87
-38 88 12 190 61
-39 110 89 13 84
-40 90 14 72 185
-41 99 91 15 76
-42 92 16 19 207
-43 103 93 17 208
-44 209 56 94 18
-45 89 95 205 19
-46 77 187 96 20
-47 71 97 21 98
-48 22 17 138 98
-49 55 99 23 139
-50 78 100 24 140
-51 101 25 73 119
-52 66 102 26 195
-53 23 103 27 109
-54 22 104 107 32
-55 111 24 49 162
-56 44 112 25 105
-57 12 67 106 63
-58 1 62 184 65
-59 71 107 119 186
-60 79 115 72 108
-61 11 38 128 85
-62 58 126 30 141
-63 132 57 159 142
-64 143 124 28 31
-65 121 154 144 58
-66 100 13 52 129
-67 165 57 3 129
-68 1 145 29 128
-69 198 76 109 120
-70 77 110 78 117
-71 165 14 47 59
-72 15 60 138 40
-73 134 16 51 85
-74 100 36 18 118
-75 145 80 19 185
-76 145 69 41 20
-77 46 70 139 21
-78 22 146 70 50
-79 23 34 147 60
-80 37 27 75 119
-81 121 168 148 28
-82 231 122 149 29
-83 123 170 150 30
-84 39 105 32 120
-85 121 34 61 73
-86 33 36 136 131
-87 112 37 137 151
-88 38 140 152 164
-89 45 135 39 153
-90 154 25 40 175
-91 234 125 6 41
-92 154 155 237 42
-93 156 167 193 43
-94 44 232 157 127
-95 45 168 158 216
-96 46 127 8 173
-97 24 47 235 159
-98 166 47 48 160
-99 49 149 161 41
-100 66 123 50 74
-101 132 35 51 140
-102 136 52 162 163
-103 128 53 163 43
-104 111 129 54 164
-105 165 187 56 84
-106 166 57 233 130
-107 167 179 59 54
-108 168 37 180 60
-109 69 169 53 174
-110 176 70 170 39
-111 55 104 181 217
-112 56 203 182 87
-113 125 171 29 131
-114 123 127 172 31
-115 144 135 60 173
-116 177 212 136 174
-117 70 137 172 175
-118 176 147 148 74
-119 177 80 59 51
-120 178 36 69 84
-121 4 81 85 65
-122 27 82 138 196
-123 100 114 83 10
-124 200 193 194 64
-125 91 113 157 214
-126 189 201 191 62
-127 114 202 94 96
-128 68 103 61 186
-129 66 198 67 104
-130 106 139 32 197
-131 113 9 86 197
-132 2 101 63 196
-133 178 211 179 140
-134 146 180 73 150
-135 33 89 188 115
-136 34 102 116 86
-137 35 117 184 87
-138 122 48 72 184
-139 77 188 49 130
-140 88 133 101 50
-141 203 62 185 219
-142 232 204 63 186
-143 187 221 205 64
-144 200 115 206 65
-145 68 28 75 76
-146 78 134 189 14
-147 79 194 118 20
-148 81 202 118 207
-149 99 220 82 208
-150 209 210 134 83
-151 191 16 206 87
-152 88 192 17 239
-153 89 223 193 18
-154 210 90 92 65
-155 211 92 224 159
-156 176 199 93 225
-157 212 125 94 226
-158 179 160 95 227
-159 155 192 63 97
-160 190 158 236 98
-161 99 213 238 195
-162 55 102 214 240
-163 222 102 103 215
-164 88 104 204 216
-165 67 71 105 30
-166 106 217 218 98
-167 93 107 196 218
-168 81 95 108 219
-169 220 181 109 197
-170 110 221 83 182
-171 198 222 113 237
-172 201 223 114 117
-173 224 115 227 96
-174 213 225 116 109
-175 90 226 117 229
-176 110 156 227 118
-177 190 15 116 119
-178 133 195 21 120
-179 133 158 107 228
-180 134 108 229 230
-181 111 169 191 230
-182 112 213 170 215
-183 224 194 185 230
-184 12 58 137 138
-185 40 183 75 141
-186 234 59 128 142
-187 143 199 46 105
-188 135 26 139 31
-189 199 146 126 7
-190 231 177 38 160
-191 222 126 181 151
-192 200 202 159 152
-193 124 93 204 153
-194 124 147 5 183
-195 178 233 161 52
-196 132 122 167 212
-197 211 169 130 131
-198 69 235 171 129
-199 187 156 189 226
-200 144 124 192 217
-201 126 214 172 208
-202 148 192 236 127
-203 220 112 237 141
-204 193 207 142 164
-205 143 45 232 218
-206 144 216 151 240
-207 148 204 228 42
-208 221 201 149 43
-209 44 222 225 150
-210 154 214 150 238
-211 133 155 240 197
-212 157 116 239 196
-213 182 161 174 229
-214 210 201 125 162
-215 231 223 182 163
-216 233 95 206 164
-217 111 166 200 219
-218 166 167 224 205
-219 168 238 217 141
-220 169 203 149 226
-221 143 170 236 208
-222 209 191 171 163
-223 215 172 239 153
-224 155 183 173 218
-225 209 156 234 174
-226 220 199 157 175
-227 176 158 173 239
-228 179 235 207 230
-229 180 213 240 175
-230 180 181 183 228
-231 232 190 82 215
-232 231 94 205 142
-233 237 106 216 195
-234 91 225 236 186
-235 198 238 228 97
-236 221 234 202 160
-237 233 92 203 171
-238 210 235 161 219
-239 212 223 227 152
-240 211 162 206 229
0

**************