[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 75 ] =
UG(ATD[240,98]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {40, 41}, {102, 103}, {136, 138}, {1, 2}, {177, 178}, {132, 135},
{76, 79}, {1, 5}, {139, 143}, {130, 134}, {3, 7}, {2, 6}, {88, 93}, {226, 231},
{147, 150}, {120, 125}, {122, 127}, {24, 30}, {131, 133}, {72, 78}, {27, 28},
{168, 175}, {121, 126}, {165, 173}, {224, 232}, {166, 174}, {87, 94}, {163,
170}, {180, 190}, {227, 233}, {194, 200}, {183, 189}, {182, 188}, {4, 15}, {230,
237}, {197, 206}, {52, 63}, {82, 89}, {4, 8}, {3, 14}, {225, 236}, {83, 94},
{113, 124}, {17, 31}, {229, 235}, {228, 234}, {162, 172}, {84, 90}, {2, 13},
{164, 171}, {96, 111}, {100, 107}, {11, 26}, {207, 222}, {43, 58}, {205, 223},
{10, 25}, {167, 180}, {42, 57}, {99, 119}, {161, 181}, {142, 154}, {5, 16}, {73,
92}, {9, 28}, {7, 18}, {46, 56}, {68, 82}, {6, 17}, {204, 219}, {202, 221},
{137, 145}, {207, 215}, {206, 214}, {205, 213}, {169, 176}, {203, 210}, {201,
208}, {5, 31}, {8, 19}, {202, 209}, {12, 23}, {137, 149}, {236, 240}, {200,
212}, {9, 20}, {130, 159}, {11, 22}, {77, 80}, {138, 148}, {10, 21}, {239, 240},
{204, 211}, {192, 223}, {78, 81}, {74, 106}, {151, 183}, {147, 179}, {82, 115},
{199, 230}, {197, 228}, {195, 226}, {152, 185}, {198, 229}, {13, 40}, {203,
238}, {6, 32}, {192, 230}, {22, 48}, {7, 33}, {135, 160}, {196, 227}, {12, 36},
{144, 184}, {30, 54}, {29, 53}, {15, 39}, {14, 38}, {13, 37}, {94, 118}, {10,
35}, {26, 51}, {24, 49}, {8, 34}, {29, 55}, {88, 114}, {16, 59}, {132, 175},
{25, 50}, {20, 63}, {17, 60}, {128, 173}, {19, 62}, {80, 126}, {81, 127}, {18,
61}, {129, 174}, {27, 52}, {71, 119}, {75, 123}, {74, 122}, {73, 121}, {72,
120}, {68, 117}, {144, 161}, {91, 106}, {79, 125}, {95, 109}, {64, 115}, {136,
187}, {157, 169}, {218, 238}, {15, 58}, {218, 239}, {138, 191}, {133, 176}, {67,
118}, {65, 116}, {70, 112}, {217, 239}, {209, 231}, {14, 57}, {134, 177}, {66,
117}, {16, 40}, {23, 47}, {22, 46}, {21, 45}, {20, 44}, {19, 43}, {18, 42}, {17,
41}, {155, 162}, {132, 190}, {215, 237}, {214, 236}, {211, 233}, {210, 232},
{133, 191}, {12, 55}, {71, 124}, {64, 123}, {128, 188}, {129, 189}, {65, 124},
{220, 225}, {139, 182}, {153, 167}, {213, 235}, {212, 234}, {141, 178}, {60,
120}, {140, 200}, {62, 122}, {61, 121}, {143, 202}, {38, 96}, {134, 192}, {47,
105}, {46, 104}, {39, 97}, {142, 201}, {137, 193}, {40, 98}, {58, 112}, {45,
103}, {44, 102}, {41, 99}, {59, 119}, {143, 195}, {142, 194}, {141, 193}, {60,
113}, {42, 100}, {43, 101}, {61, 114}, {150, 198}, {155, 201}, {159, 205}, {158,
204}, {21, 64}, {145, 196}, {23, 65}, {157, 203}, {156, 202}, {153, 207}, {152,
206}, {56, 111}, {146, 197}, {26, 66}, {186, 226}, {185, 225}, {184, 224}, {54,
110}, {53, 109}, {52, 108}, {51, 107}, {31, 71}, {30, 70}, {29, 69}, {28, 68},
{27, 67}, {151, 206}, {189, 228}, {146, 200}, {49, 106}, {190, 229}, {187, 224},
{150, 205}, {144, 203}, {62, 98}, {60, 97}, {145, 204}, {59, 101}, {191, 225},
{153, 199}, {188, 227}, {37, 69}, {190, 222}, {186, 219}, {188, 221}, {36, 71},
{165, 198}, {164, 199}, {48, 85}, {189, 216}, {56, 93}, {50, 87}, {41, 79},
{191, 217}, {177, 215}, {176, 214}, {49, 86}, {187, 220}, {32, 72}, {48, 88},
{35, 75}, {34, 74}, {33, 73}, {20, 125}, {39, 78}, {37, 76}, {47, 69}, {176,
218}, {63, 85}, {38, 77}, {51, 88}, {32, 76}, {168, 196}, {34, 78}, {33, 77},
{52, 89}, {54, 91}, {50, 92}, {53, 90}, {181, 218}, {160, 207}, {45, 92}, {178,
195}, {57, 75}, {148, 231}, {179, 192}, {11, 113}, {175, 213}, {174, 212}, {171,
209}, {170, 208}, {56, 66}, {43, 81}, {42, 80}, {37, 95}, {47, 84}, {186, 193},
{163, 216}, {35, 94}, {149, 232}, {36, 90}, {173, 211}, {172, 210}, {45, 83},
{44, 82}, {166, 217}, {104, 232}, {109, 237}, {9, 136}, {107, 234}, {25, 154},
{9, 140}, {110, 235}, {24, 158}, {97, 233}, {87, 220}, {106, 230}, {86, 219},
{68, 212}, {96, 240}, {70, 211}, {92, 201}, {4, 156}, {48, 170}, {49, 171}, {7,
155}, {3, 157}, {50, 172}, {25, 185}, {1, 160}, {15, 173}, {69, 226}, {55, 159},
{65, 233}, {5, 175}, {64, 234}, {24, 179}, {29, 177}, {66, 239}, {22, 184}, {4,
180}, {67, 240}, {3, 183}, {26, 174}, {102, 208}, {1, 182}, {11, 181}, {46,
238}, {75, 139}, {74, 138}, {73, 137}, {72, 136}, {76, 140}, {77, 141}, {97,
161}, {98, 162}, {99, 163}, {100, 164}, {118, 182}, {119, 183}, {120, 184}, {2,
195}, {79, 142}, {81, 144}, {114, 179}, {116, 181}, {83, 145}, {86, 148}, {87,
149}, {103, 165}, {91, 152}, {122, 185}, {67, 135}, {127, 187}, {126, 186}, {93,
153}, {108, 168}, {28, 217}, {70, 131}, {95, 154}, {84, 146}, {85, 147}, {27,
220}, {32, 231}, {101, 162}, {110, 169}, {115, 180}, {12, 196}, {38, 238}, {18,
216}, {23, 219}, {107, 167}, {19, 222}, {90, 151}, {95, 146}, {16, 222}, {8,
199}, {35, 236}, {10, 197}, {89, 150}, {105, 166}, {111, 160}, {59, 235}, {112,
161}, {113, 163}, {116, 166}, {117, 167}, {62, 237}, {127, 172}, {83, 128}, {84,
129}, {86, 131}, {126, 171}, {114, 164}, {115, 165}, {21, 194}, {85, 130}, {125,
170}, {14, 214}, {30, 198}, {112, 169}, {13, 215}, {6, 221}, {93, 134}, {57,
228}, {89, 132}, {111, 178}, {91, 133}, {118, 168}, {58, 229}, {63, 224}, {80,
143}, {104, 141}, {105, 140}, {121, 158}, {123, 156}, {54, 223}, {53, 223},
{104, 130}, {51, 216}, {96, 139}, {61, 208}, {44, 194}, {36, 213}, {117, 135},
{33, 210}, {34, 209}, {108, 159}, {102, 147}, {109, 152}, {55, 193}, {116, 131},
{98, 154}, {99, 155}, {100, 156}, {101, 157}, {103, 158}, {108, 149}, {110,
151}, {39, 221}, {123, 128}, {31, 227}, {105, 148}, {124, 129} }>;
(II) A more general form is to represent the graph as the orbit of {40, 41}
under the group generated by the following permutations:
a: (2, 160, 5, 182)(3, 25, 9, 11)(4, 55)(6, 111, 16, 118)(7, 185, 20, 181)(8,
159, 15, 193)(10, 140, 26, 183)(12, 156, 29, 180)(13, 135, 31, 139)(14, 154, 28,
113)(17, 96, 40, 67)(18, 152, 44, 116)(19, 108, 39, 141)(21, 105, 51, 151)(22,
157, 50, 136)(23, 100, 53, 115)(27, 60, 38, 98)(30, 158, 49, 179)(32, 56, 59,
94)(33, 122, 63, 161)(34, 130, 58, 137)(35, 76, 66, 119)(36, 123, 69, 167)(37,
117, 71, 75)(41, 240)(42, 109, 82, 65)(43, 149, 78, 104)(45, 148, 88, 110)(46,
101, 87, 72)(47, 107, 90, 64)(48, 169, 92, 138)(52, 97, 77, 62)(54, 103, 86,
114)(57, 95, 68, 124)(61, 91, 102, 131)(70, 121, 106, 147)(73, 74, 85, 112)(79,
239, 99, 236)(80, 237, 89, 233)(81, 232)(83, 231, 93, 235)(84, 234)(120, 238,
162, 220)(125, 218, 155, 225)(126, 230, 150, 211)(127, 224, 144, 210)(128, 226,
153, 213)(129, 228, 146, 212)(132, 227, 143, 215)(133, 208)(134, 229, 145,
209)(142, 217, 163, 214)(164, 223, 165, 219)(166, 216, 206, 194)(168, 221, 178,
222)(170, 176, 201, 191)(171, 192, 198, 204)(172, 187, 184, 203)(173, 186, 199,
205)(174, 189, 197, 200)(175, 188, 195, 207)(177, 190, 196, 202) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 195, 226, 186, 219, 204, 211, 173, 15, 4, 8, 199, 230, 192, 223, 205,
213, 175, 5)(3, 28, 155, 239, 142, 238, 200, 210, 174, 50, 11, 10, 184, 228,
187, 216, 225, 170, 214, 20)(6, 143, 231, 126, 86, 158, 70, 165, 58, 180, 19,
153, 237, 134, 53, 159, 36, 168, 31, 182)(7, 217, 201, 218, 194, 203, 212, 172,
26, 25, 22, 197, 224, 189, 220, 163, 236, 125, 14, 9)(12, 196, 227, 188, 221,
202, 209, 171, 49, 24, 30, 198, 229, 190, 222, 207, 215, 177, 29, 55)(13, 178,
69, 193, 23, 145, 233, 128, 39, 156, 34, 164, 106, 179, 54, 150, 235, 132, 16,
160)(17, 139, 32, 80, 148, 121, 131, 103, 112, 115, 43, 167, 62, 93, 109, 130,
90, 108, 71, 118)(18, 191, 208, 176, 44, 157, 68, 162, 66, 154, 46, 146, 232,
129, 87, 113, 35, 120, 57, 136)(21, 144, 234, 127, 51, 185, 48, 206, 63, 183,
27, 99, 240, 79, 38, 140, 33, 166, 92, 181)(37, 141, 47, 137, 65, 83, 97, 123,
78, 100, 74, 114, 91, 147, 110, 89, 59, 135, 40, 111)(41, 96, 76, 77, 105, 73,
116, 45, 161, 64, 81, 107, 122, 88, 152, 85, 151, 52, 119, 67)(42, 138, 61, 133,
102, 169, 82, 101, 117, 98, 56, 95, 104, 84, 149, 124, 94, 60, 75, 72)
C4[ 240, 75 ]
240
-1 2 5 160 182
-2 1 13 6 195
-3 14 157 7 183
-4 156 15 180 8
-5 1 16 31 175
-6 221 2 17 32
-7 33 155 3 18
-8 34 199 4 19
-9 136 28 140 20
-10 35 25 21 197
-11 22 113 26 181
-12 55 23 36 196
-13 2 37 215 40
-14 57 3 38 214
-15 58 4 39 173
-16 222 59 5 40
-17 60 6 41 31
-18 61 7 216 42
-19 222 62 8 43
-20 44 125 63 9
-21 45 194 64 10
-22 11 46 48 184
-23 12 47 65 219
-24 179 158 49 30
-25 154 50 185 10
-26 11 66 51 174
-27 220 67 28 52
-28 68 27 217 9
-29 55 177 69 53
-30 198 24 70 54
-31 5 71 17 227
-32 231 6 72 76
-33 77 210 7 73
-34 209 78 8 74
-35 236 94 75 10
-36 12 90 213 71
-37 13 69 95 76
-38 77 14 238 96
-39 78 221 15 97
-40 13 16 41 98
-41 99 79 17 40
-42 100 57 80 18
-43 101 58 81 19
-44 102 82 194 20
-45 92 103 83 21
-46 22 56 104 238
-47 23 69 105 84
-48 22 88 170 85
-49 24 171 106 86
-50 25 92 172 87
-51 88 26 216 107
-52 89 27 63 108
-53 90 223 29 109
-54 110 91 223 30
-55 12 159 193 29
-56 66 111 46 93
-57 14 228 42 75
-58 112 15 229 43
-59 101 235 16 119
-60 113 17 97 120
-61 121 114 18 208
-62 122 237 19 98
-63 224 52 85 20
-64 123 234 115 21
-65 23 233 124 116
-66 56 26 117 239
-67 135 27 118 240
-68 212 82 28 117
-69 47 37 226 29
-70 112 211 30 131
-71 36 124 31 119
-72 78 136 32 120
-73 33 121 92 137
-74 34 122 138 106
-75 35 57 123 139
-76 79 37 140 32
-77 33 80 38 141
-78 34 81 39 72
-79 125 41 76 142
-80 77 143 126 42
-81 78 144 127 43
-82 44 89 68 115
-83 45 145 94 128
-84 90 47 146 129
-85 48 147 63 130
-86 49 148 131 219
-87 220 50 94 149
-88 48 114 93 51
-89 132 82 150 52
-90 36 84 151 53
-91 133 106 152 54
-92 45 201 50 73
-93 88 56 134 153
-94 35 83 118 87
-95 154 146 37 109
-96 111 38 139 240
-97 233 60 39 161
-98 154 40 62 162
-99 155 41 119 163
-100 156 107 42 164
-101 157 59 162 43
-102 44 103 147 208
-103 165 45 102 158
-104 232 46 130 141
-105 166 47 148 140
-106 91 49 74 230
-107 100 167 234 51
-108 168 159 149 52
-109 237 95 53 152
-110 169 235 151 54
-111 56 178 160 96
-112 58 70 169 161
-113 11 124 60 163
-114 88 179 61 164
-115 165 180 82 64
-116 166 181 65 131
-117 66 68 167 135
-118 67 168 94 182
-119 99 59 71 183
-120 125 60 72 184
-121 158 126 61 73
-122 127 62 74 185
-123 156 128 64 75
-124 113 71 129 65
-125 79 170 20 120
-126 121 80 171 186
-127 187 122 81 172
-128 188 123 83 173
-129 189 124 84 174
-130 134 104 159 85
-131 133 70 116 86
-132 89 135 190 175
-133 176 91 191 131
-134 177 93 192 130
-135 132 67 160 117
-136 187 72 138 9
-137 145 149 193 73
-138 136 191 148 74
-139 143 182 96 75
-140 200 105 9 76
-141 77 178 104 193
-142 154 79 201 194
-143 80 202 139 195
-144 81 203 161 184
-145 137 83 204 196
-146 200 84 95 197
-147 102 179 150 85
-148 231 105 138 86
-149 232 137 108 87
-150 198 89 147 205
-151 110 90 183 206
-152 91 206 185 109
-153 199 167 93 207
-154 25 95 98 142
-155 99 201 7 162
-156 100 123 4 202
-157 101 3 169 203
-158 121 24 103 204
-159 55 205 108 130
-160 1 111 135 207
-161 144 112 181 97
-162 155 101 172 98
-163 99 113 170 216
-164 100 199 114 171
-165 198 103 115 173
-166 105 116 217 174
-167 180 117 107 153
-168 118 108 196 175
-169 110 176 112 157
-170 48 125 163 208
-171 209 49 126 164
-172 210 50 127 162
-173 165 211 15 128
-174 166 212 26 129
-175 132 168 213 5
-176 133 169 214 218
-177 134 178 215 29
-178 111 177 195 141
-179 24 114 147 192
-180 167 190 4 115
-181 11 116 161 218
-182 1 188 139 118
-183 189 3 151 119
-184 22 144 224 120
-185 122 25 225 152
-186 126 193 226 219
-187 220 136 224 127
-188 221 182 128 227
-189 183 216 129 228
-190 132 222 180 229
-191 133 225 138 217
-192 134 179 223 230
-193 55 137 141 186
-194 44 200 21 142
-195 143 2 178 226
-196 12 145 168 227
-197 146 206 228 10
-198 165 150 30 229
-199 8 153 164 230
-200 146 212 194 140
-201 155 92 142 208
-202 143 209 221 156
-203 144 210 157 238
-204 145 211 158 219
-205 223 213 159 150
-206 214 151 152 197
-207 222 160 215 153
-208 102 201 170 61
-209 231 34 202 171
-210 33 232 203 172
-211 233 70 204 173
-212 68 200 234 174
-213 36 235 205 175
-214 176 14 236 206
-215 177 13 237 207
-216 189 18 51 163
-217 166 191 28 239
-218 176 181 238 239
-219 23 204 86 186
-220 187 27 225 87
-221 188 202 6 39
-222 190 16 19 207
-223 192 205 53 54
-224 187 232 63 184
-225 220 191 236 185
-226 231 69 195 186
-227 188 233 31 196
-228 57 189 234 197
-229 198 58 190 235
-230 199 192 237 106
-231 209 148 226 32
-232 210 224 104 149
-233 211 227 97 65
-234 212 107 228 64
-235 110 59 213 229
-236 35 214 225 240
-237 215 62 109 230
-238 46 38 203 218
-239 66 217 218 240
-240 67 236 96 239
0