C4graphGraph forms for C4 [ 240, 77 ] = UG(ATD[240,110])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 77 ] = UG(ATD[240,110]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {62, 63}, {156, 157}, {124, 125}, {70, 71}, {108, 109}, {173, 175}, {1, 2}, {228, 231}, {185, 186}, {164, 167}, {45, 46}, {9, 13}, {1, 4}, {227, 230}, {226, 231}, {217, 220}, {51, 54}, {3, 6}, {105, 108}, {128, 134}, {2, 5}, {210, 213}, {115, 116}, {120, 127}, {2, 10}, {225, 233}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {195, 201}, {229, 233}, {102, 107}, {119, 122}, {166, 168}, {1, 17}, {168, 185}, {47, 61}, {76, 95}, {8, 28}, {11, 31}, {10, 30}, {9, 29}, {35, 54}, {207, 218}, {163, 182}, {39, 50}, {44, 58}, {162, 180}, {96, 118}, {111, 120}, {171, 188}, {8, 16}, {9, 17}, {69, 92}, {97, 122}, {4, 24}, {161, 189}, {65, 93}, {7, 27}, {6, 26}, {5, 25}, {199, 217}, {167, 184}, {135, 165}, {144, 178}, {14, 42}, {79, 107}, {91, 125}, {19, 52}, {133, 162}, {24, 48}, {198, 238}, {1, 40}, {198, 239}, {197, 236}, {143, 166}, {141, 164}, {3, 41}, {94, 116}, {20, 63}, {192, 235}, {142, 165}, {134, 173}, {71, 108}, {79, 100}, {12, 32}, {193, 237}, {192, 236}, {15, 34}, {16, 61}, {195, 237}, {14, 33}, {196, 235}, {17, 62}, {18, 34}, {218, 234}, {214, 230}, {193, 240}, {20, 38}, {21, 39}, {87, 101}, {11, 56}, {16, 35}, {15, 60}, {148, 160}, {158, 170}, {12, 57}, {218, 239}, {215, 226}, {197, 240}, {14, 59}, {18, 36}, {222, 232}, {23, 33}, {22, 32}, {19, 37}, {13, 58}, {215, 224}, {216, 224}, {220, 228}, {219, 227}, {216, 225}, {204, 240}, {212, 232}, {210, 238}, {10, 55}, {22, 40}, {219, 229}, {209, 239}, {23, 41}, {95, 96}, {220, 227}, {143, 176}, {50, 114}, {157, 221}, {150, 214}, {48, 113}, {141, 204}, {49, 115}, {170, 233}, {147, 214}, {152, 221}, {136, 206}, {47, 104}, {151, 208}, {128, 200}, {153, 209}, {130, 202}, {144, 217}, {150, 223}, {31, 85}, {133, 207}, {45, 103}, {49, 125}, {51, 127}, {50, 126}, {32, 110}, {133, 203}, {33, 111}, {129, 206}, {188, 236}, {191, 239}, {184, 234}, {32, 115}, {190, 237}, {148, 199}, {40, 123}, {36, 119}, {55, 99}, {191, 235}, {190, 234}, {21, 64}, {41, 124}, {35, 118}, {33, 116}, {31, 74}, {29, 72}, {23, 66}, {47, 121}, {137, 223}, {22, 65}, {135, 208}, {34, 117}, {30, 73}, {23, 78}, {183, 238}, {2, 88}, {182, 236}, {149, 207}, {148, 206}, {129, 219}, {3, 89}, {24, 67}, {28, 71}, {145, 205}, {7, 90}, {183, 234}, {131, 222}, {39, 122}, {37, 120}, {27, 70}, {25, 68}, {8, 87}, {131, 220}, {50, 109}, {38, 121}, {26, 69}, {163, 195}, {179, 211}, {44, 77}, {176, 209}, {171, 202}, {169, 200}, {167, 196}, {26, 126}, {51, 87}, {48, 85}, {162, 199}, {28, 123}, {180, 211}, {172, 203}, {49, 86}, {43, 76}, {10, 98}, {39, 79}, {38, 78}, {37, 77}, {36, 76}, {34, 75}, {161, 203}, {56, 83}, {139, 224}, {28, 112}, {54, 90}, {53, 89}, {52, 88}, {30, 114}, {29, 113}, {60, 81}, {167, 202}, {140, 225}, {18, 124}, {166, 200}, {186, 213}, {146, 227}, {165, 212}, {163, 210}, {53, 71}, {165, 215}, {56, 75}, {145, 226}, {24, 108}, {170, 222}, {27, 111}, {26, 110}, {25, 109}, {49, 68}, {63, 74}, {147, 228}, {189, 202}, {159, 232}, {35, 91}, {46, 86}, {172, 213}, {187, 194}, {42, 80}, {184, 194}, {177, 203}, {43, 81}, {47, 84}, {168, 211}, {156, 231}, {60, 64}, {175, 211}, {162, 222}, {46, 83}, {169, 212}, {155, 230}, {55, 74}, {54, 75}, {52, 73}, {44, 82}, {179, 205}, {178, 204}, {166, 216}, {53, 74}, {160, 223}, {154, 229}, {45, 172}, {59, 190}, {7, 129}, {91, 208}, {58, 182}, {67, 207}, {61, 177}, {60, 176}, {92, 208}, {27, 150}, {63, 178}, {21, 155}, {72, 198}, {121, 233}, {117, 231}, {118, 228}, {20, 135}, {66, 209}, {57, 173}, {59, 175}, {58, 174}, {56, 173}, {116, 225}, {5, 147}, {43, 189}, {9, 159}, {8, 158}, {90, 204}, {21, 130}, {127, 232}, {4, 156}, {6, 157}, {68, 218}, {42, 181}, {51, 146}, {117, 212}, {41, 139}, {100, 192}, {101, 193}, {102, 194}, {126, 219}, {70, 237}, {104, 195}, {118, 221}, {123, 215}, {105, 196}, {44, 131}, {98, 205}, {106, 197}, {25, 169}, {42, 154}, {65, 240}, {19, 160}, {15, 187}, {53, 129}, {52, 128}, {114, 198}, {55, 130}, {126, 200}, {127, 201}, {92, 235}, {121, 206}, {20, 174}, {57, 131}, {12, 183}, {62, 133}, {57, 130}, {93, 230}, {123, 199}, {13, 176}, {22, 168}, {80, 238}, {59, 132}, {77, 140}, {72, 138}, {83, 144}, {17, 213}, {66, 135}, {84, 145}, {86, 147}, {64, 134}, {95, 153}, {111, 169}, {30, 217}, {76, 139}, {85, 146}, {93, 149}, {94, 150}, {98, 171}, {100, 174}, {101, 175}, {67, 136}, {69, 142}, {107, 160}, {69, 137}, {97, 172}, {99, 174}, {43, 229}, {91, 148}, {94, 145}, {100, 180}, {122, 170}, {92, 141}, {93, 143}, {102, 178}, {18, 196}, {19, 197}, {67, 155}, {72, 144}, {11, 210}, {16, 205}, {80, 141}, {82, 143}, {97, 188}, {70, 153}, {81, 142}, {83, 179}, {106, 138}, {104, 137}, {88, 187}, {110, 138}, {112, 149}, {88, 190}, {89, 191}, {113, 151}, {82, 181}, {99, 132}, {103, 128}, {107, 140}, {89, 177}, {112, 152}, {119, 159}, {80, 185}, {65, 171}, {86, 188}, {87, 189}, {114, 152}, {81, 186}, {101, 142}, {46, 194}, {106, 134}, {105, 132}, {115, 158}, {120, 149}, {84, 186}, {38, 201}, {78, 161}, {84, 187}, {90, 181}, {103, 136}, {68, 180}, {66, 179}, {85, 164}, {117, 132}, {36, 214}, {82, 161}, {124, 136}, {45, 216}, {104, 157}, {106, 159}, {78, 184}, {79, 185}, {40, 223}, {125, 138}, {96, 151}, {105, 158}, {37, 221}, {73, 177}, {48, 201}, {97, 152}, {99, 154}, {77, 183}, {94, 164}, {96, 154}, {109, 151}, {98, 153}, {103, 156}, {112, 139}, {73, 181}, {95, 163}, {110, 146}, {29, 224}, {75, 182}, {61, 192}, {31, 226}, {102, 155}, {113, 140}, {119, 137}, {62, 193}, {64, 191} }>;

(II) A more general form is to represent the graph as the orbit of {62, 63} under the group generated by the following permutations:

a: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 22)(10, 24)(11, 27)(13, 32)(14, 34)(16, 38)(17, 40)(18, 42)(19, 45)(21, 50)(23, 54)(25, 57)(26, 60)(28, 63)(29, 65)(30, 67)(31, 70)(33, 75)(35, 78)(36, 80)(37, 46)(41, 90)(43, 92)(44, 49)(48, 98)(51, 66)(52, 103)(55, 108)(56, 111)(58, 115)(59, 117)(61, 121)(62, 123)(64, 126)(68, 131)(69, 81)(71, 74)(72, 93)(73, 136)(76, 141)(77, 86)(79, 122)(82, 125)(83, 120)(84, 104)(85, 153)(87, 135)(88, 156)(89, 129)(91, 161)(94, 163)(95, 164)(96, 167)(97, 107)(99, 105)(100, 170)(101, 165)(102, 152)(106, 166)(109, 130)(110, 176)(112, 178)(113, 171)(114, 155)(116, 182)(118, 184)(119, 185)(124, 181)(127, 179)(133, 199)(134, 200)(137, 186)(138, 143)(139, 204)(140, 188)(144, 149)(145, 195)(146, 209)(147, 183)(148, 203)(150, 210)(151, 202)(154, 196)(157, 187)(158, 174)(159, 168)(160, 172)(169, 173)(175, 212)(177, 206)(180, 222)(189, 208)(190, 231)(191, 219)(192, 233)(193, 215)(194, 221)(197, 216)(198, 230)(201, 205)(207, 217)(211, 232)(213, 223)(214, 238)(218, 220)(224, 240)(225, 236)(226, 237)(227, 239)(228, 234)(229, 235)
b: (1, 2, 88, 190, 237, 70, 27, 111, 120, 149, 93, 143, 82, 161, 189, 43, 229, 233, 170, 122, 39, 79, 100, 192, 235, 92, 208, 91, 125, 138, 72, 144, 83, 56, 11, 31, 226, 231, 156, 4)(3, 85, 215, 228, 103, 12, 17, 10, 187, 59, 195, 71, 150, 169, 37, 207, 65, 176, 181, 78, 87, 76, 219, 225, 222, 97, 21, 185, 174, 61, 196, 69, 151, 148, 49, 106, 198, 178, 179, 75)(5, 52, 234, 193, 153, 7, 33, 127, 112, 230, 166, 44, 203, 202, 81, 154, 121, 158, 119, 50, 107, 180, 236, 191, 141, 135, 35, 124, 110, 29, 217, 46, 173, 210, 74, 145, 117, 157, 24, 40)(6, 48, 123, 147, 128, 183, 62, 98, 15, 14, 201, 28, 214, 200, 77, 133, 171, 60, 42, 38, 8, 36, 126, 140, 162, 188, 64, 80, 20, 16, 18, 26, 113, 199, 86, 134, 238, 63, 205, 34)(9, 30, 194, 175, 163, 53, 94, 212, 221, 67, 22, 13, 73, 184, 101, 95, 129, 116, 232, 152, 155, 168, 58, 177, 167, 142, 96, 206, 115, 159, 114, 102, 211, 182, 89, 164, 165, 118, 136, 32)(19, 218, 240, 209, 90, 23, 51, 139, 227, 216, 131, 172, 130, 186, 99, 47, 105, 137, 109, 160, 68, 197, 239, 204, 66, 54, 41, 146, 224, 220, 45, 57, 213, 55, 84, 132, 104, 108, 223, 25)
c: (2, 17)(3, 16)(4, 40)(5, 9)(6, 8)(7, 38)(10, 213)(11, 205)(12, 22)(14, 87)(15, 20)(18, 208)(19, 207)(21, 79)(23, 54)(24, 223)(25, 159)(26, 158)(27, 201)(28, 157)(29, 147)(30, 172)(31, 145)(33, 51)(34, 135)(35, 41)(36, 151)(37, 149)(42, 189)(43, 154)(44, 143)(45, 217)(46, 144)(47, 53)(48, 150)(49, 138)(50, 122)(52, 133)(55, 186)(56, 179)(57, 168)(58, 176)(59, 101)(60, 174)(61, 89)(62, 88)(63, 187)(64, 100)(65, 183)(66, 75)(67, 160)(68, 106)(69, 105)(70, 195)(71, 104)(72, 86)(73, 203)(74, 84)(76, 96)(77, 93)(78, 90)(80, 202)(81, 99)(85, 94)(91, 124)(92, 196)(97, 114)(98, 210)(103, 199)(107, 155)(108, 137)(109, 119)(110, 115)(111, 127)(112, 221)(113, 214)(116, 146)(117, 165)(118, 139)(121, 129)(123, 156)(126, 170)(128, 162)(130, 185)(131, 166)(132, 142)(134, 180)(136, 148)(140, 230)(141, 167)(153, 163)(161, 181)(169, 232)(171, 238)(173, 211)(178, 194)(182, 209)(184, 204)(188, 198)(190, 193)(191, 192)(197, 218)(200, 222)(215, 231)(216, 220)(219, 233)(224, 228)(225, 227)(234, 240)(236, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 77 ]
240
-1 2 4 17 40
-2 88 1 5 10
-3 11 89 6 41
-4 1 12 24 156
-5 2 13 25 147
-6 3 14 157 26
-7 90 15 27 129
-8 158 16 28 87
-9 13 159 17 29
-10 55 2 30 98
-11 56 210 3 31
-12 57 4 183 32
-13 176 58 5 9
-14 33 59 6 42
-15 187 34 60 7
-16 35 61 205 8
-17 1 213 62 9
-18 34 36 124 196
-19 37 160 52 197
-20 135 38 63 174
-21 155 39 64 130
-22 168 40 32 65
-23 33 66 78 41
-24 67 4 48 108
-25 68 169 5 109
-26 110 69 126 6
-27 111 70 7 150
-28 112 123 71 8
-29 113 224 72 9
-30 114 73 217 10
-31 11 226 74 85
-32 22 110 12 115
-33 23 111 14 116
-34 15 18 117 75
-35 91 16 118 54
-36 214 18 119 76
-37 77 221 19 120
-38 121 78 201 20
-39 122 79 50 21
-40 22 1 123 223
-41 23 3 124 139
-42 154 14 80 181
-43 189 81 229 76
-44 77 58 82 131
-45 46 103 172 216
-46 45 83 194 86
-47 121 104 61 84
-48 24 113 201 85
-49 68 125 115 86
-50 114 126 39 109
-51 146 127 54 87
-52 88 73 128 19
-53 89 71 74 129
-54 35 90 51 75
-55 99 74 130 10
-56 11 83 173 75
-57 12 173 130 131
-58 44 13 182 174
-59 132 14 190 175
-60 176 15 81 64
-61 177 47 16 192
-62 133 17 193 63
-63 178 62 74 20
-64 134 191 60 21
-65 22 93 171 240
-66 209 23 135 179
-67 155 24 136 207
-68 25 180 49 218
-69 26 92 137 142
-70 27 71 237 153
-71 70 28 53 108
-72 198 144 138 29
-73 177 181 30 52
-74 55 63 31 53
-75 34 56 182 54
-76 36 95 139 43
-77 44 37 183 140
-78 23 38 161 184
-79 100 39 107 185
-80 238 42 141 185
-81 60 43 142 186
-82 44 143 181 161
-83 56 144 46 179
-84 187 145 47 186
-85 146 48 31 164
-86 188 46 147 49
-87 101 189 51 8
-88 187 2 190 52
-89 177 3 191 53
-90 181 204 7 54
-91 35 125 148 208
-92 69 235 141 208
-93 143 149 65 230
-94 145 116 150 164
-95 96 163 76 153
-96 154 95 118 151
-97 122 188 172 152
-98 171 205 10 153
-99 55 132 154 174
-100 79 180 192 174
-101 193 87 142 175
-102 155 178 194 107
-103 45 156 136 128
-104 47 157 137 195
-105 132 158 108 196
-106 134 159 138 197
-107 79 102 160 140
-108 24 71 105 109
-109 25 50 151 108
-110 146 26 138 32
-111 33 169 27 120
-112 28 149 139 152
-113 48 29 140 151
-114 198 50 30 152
-115 158 49 116 32
-116 33 115 225 94
-117 132 231 34 212
-118 221 35 96 228
-119 122 36 137 159
-120 111 37 127 149
-121 233 47 38 206
-122 170 39 97 119
-123 199 28 215 40
-124 125 136 18 41
-125 91 124 49 138
-126 200 26 50 219
-127 232 201 51 120
-128 134 200 103 52
-129 7 206 53 219
-130 55 57 202 21
-131 44 220 57 222
-132 99 59 105 117
-133 203 62 162 207
-134 106 128 173 64
-135 66 165 20 208
-136 67 124 103 206
-137 69 223 104 119
-138 110 125 72 106
-139 112 224 41 76
-140 77 113 225 107
-141 80 92 204 164
-142 165 101 69 81
-143 176 166 82 93
-144 178 72 83 217
-145 94 226 84 205
-146 110 51 227 85
-147 5 214 228 86
-148 199 91 160 206
-149 112 93 207 120
-150 223 27 214 94
-151 113 96 109 208
-152 221 112 114 97
-153 209 70 95 98
-154 99 96 42 229
-155 67 102 21 230
-156 231 157 4 103
-157 221 156 104 6
-158 115 170 105 8
-159 232 106 9 119
-160 223 148 19 107
-161 78 189 82 203
-162 133 199 222 180
-163 210 182 95 195
-164 167 94 85 141
-165 135 212 215 142
-166 143 200 168 216
-167 202 184 196 164
-168 22 166 211 185
-169 111 200 25 212
-170 122 222 233 158
-171 188 202 65 98
-172 45 213 203 97
-173 56 57 134 175
-174 99 100 58 20
-175 101 211 59 173
-176 143 209 13 60
-177 89 203 61 73
-178 144 102 204 63
-179 66 211 83 205
-180 100 68 211 162
-181 90 82 73 42
-182 58 236 75 163
-183 77 12 234 238
-184 78 167 234 194
-185 79 80 168 186
-186 81 213 84 185
-187 88 15 84 194
-188 236 171 86 97
-189 202 161 43 87
-190 88 234 59 237
-191 89 235 239 64
-192 100 235 236 61
-193 101 237 62 240
-194 187 46 102 184
-195 201 104 237 163
-196 167 235 105 18
-197 236 106 19 240
-198 114 72 238 239
-199 123 148 162 217
-200 166 169 126 128
-201 48 38 127 195
-202 167 189 171 130
-203 133 177 161 172
-204 90 178 141 240
-205 145 179 16 98
-206 121 136 148 129
-207 67 133 149 218
-208 91 135 92 151
-209 66 176 239 153
-210 11 213 238 163
-211 168 179 180 175
-212 165 232 169 117
-213 210 17 172 186
-214 36 147 150 230
-215 165 123 224 226
-216 45 166 224 225
-217 220 144 199 30
-218 68 234 239 207
-219 126 227 129 229
-220 227 217 228 131
-221 157 37 118 152
-222 232 170 162 131
-223 137 160 40 150
-224 215 29 139 216
-225 233 116 216 140
-226 231 145 215 31
-227 220 146 219 230
-228 220 231 147 118
-229 154 233 43 219
-230 155 93 214 227
-231 156 226 117 228
-232 222 212 159 127
-233 121 170 225 229
-234 190 183 184 218
-235 92 191 192 196
-236 188 192 182 197
-237 190 70 193 195
-238 198 210 80 183
-239 198 209 191 218
-240 193 204 65 197
0

**************