[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 78 ] =
UG(ATD[240,118]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {70, 71}, {230, 231}, {104, 105}, {136, 138}, {149, 151}, {1, 2},
{205, 206}, {43, 47}, {1, 4}, {3, 6}, {88, 93}, {235, 237}, {2, 5}, {8, 15},
{83, 84}, {67, 75}, {3, 10}, {7, 14}, {5, 12}, {165, 175}, {2, 9}, {6, 13},
{131, 143}, {117, 120}, {135, 137}, {4, 11}, {192, 207}, {164, 171}, {16, 31},
{132, 148}, {5, 20}, {206, 223}, {197, 212}, {64, 81}, {15, 30}, {13, 28}, {11,
26}, {9, 24}, {7, 22}, {6, 21}, {198, 213}, {129, 146}, {14, 29}, {10, 25},
{133, 147}, {4, 19}, {160, 183}, {12, 27}, {11, 28}, {97, 123}, {106, 112},
{105, 117}, {32, 62}, {174, 176}, {33, 63}, {76, 82}, {8, 23}, {9, 41}, {155,
187}, {18, 50}, {17, 49}, {16, 48}, {15, 47}, {14, 46}, {13, 45}, {12, 44}, {11,
43}, {10, 42}, {78, 110}, {21, 52}, {77, 108}, {24, 58}, {202, 232}, {201, 235},
{31, 61}, {30, 60}, {27, 57}, {26, 56}, {22, 53}, {200, 236}, {25, 60}, {82,
119}, {28, 58}, {29, 59}, {20, 51}, {199, 224}, {156, 187}, {144, 183}, {139,
163}, {199, 239}, {195, 235}, {194, 234}, {69, 110}, {89, 114}, {149, 185}, {24,
54}, {196, 234}, {128, 174}, {25, 55}, {201, 230}, {141, 189}, {17, 32}, {139,
186}, {92, 109}, {18, 33}, {73, 125}, {67, 118}, {219, 238}, {72, 126}, {218,
236}, {73, 127}, {86, 96}, {19, 36}, {217, 238}, {199, 240}, {65, 121}, {154,
162}, {66, 122}, {10, 51}, {70, 124}, {71, 125}, {23, 44}, {83, 111}, {213,
233}, {209, 237}, {141, 177}, {131, 191}, {222, 227}, {5, 59}, {153, 167}, {134,
184}, {68, 123}, {211, 236}, {79, 112}, {23, 87}, {173, 237}, {51, 115}, {27,
91}, {26, 90}, {25, 89}, {24, 88}, {20, 85}, {130, 195}, {128, 193}, {52, 117},
{31, 94}, {29, 92}, {34, 96}, {167, 229}, {152, 218}, {44, 110}, {35, 97}, {21,
86}, {166, 229}, {129, 194}, {39, 100}, {30, 93}, {46, 106}, {38, 99}, {173,
232}, {150, 211}, {45, 104}, {36, 98}, {146, 212}, {16, 87}, {163, 228}, {151,
208}, {143, 200}, {63, 120}, {55, 112}, {46, 105}, {19, 84}, {152, 208}, {184,
240}, {56, 113}, {185, 240}, {157, 212}, {140, 197}, {62, 119}, {60, 117}, {58,
115}, {14, 69}, {158, 213}, {141, 198}, {140, 199}, {61, 118}, {57, 114}, {44,
103}, {42, 97}, {18, 94}, {138, 198}, {137, 197}, {136, 196}, {40, 101}, {170,
231}, {137, 196}, {53, 120}, {43, 102}, {150, 216}, {160, 238}, {59, 116}, {170,
229}, {9, 89}, {36, 116}, {22, 71}, {146, 195}, {132, 214}, {176, 226}, {155,
207}, {178, 231}, {150, 192}, {177, 230}, {179, 228}, {52, 109}, {149, 204},
{147, 202}, {144, 201}, {133, 220}, {54, 111}, {48, 106}, {181, 239}, {139,
209}, {49, 107}, {157, 193}, {188, 224}, {158, 194}, {131, 222}, {141, 208},
{136, 214}, {50, 109}, {182, 233}, {181, 234}, {148, 203}, {128, 223}, {51,
108}, {188, 221}, {34, 64}, {130, 224}, {41, 75}, {39, 69}, {38, 68}, {35, 65},
{165, 193}, {181, 208}, {182, 211}, {36, 66}, {57, 95}, {42, 76}, {37, 67},
{138, 237}, {50, 90}, {172, 196}, {160, 200}, {62, 84}, {140, 230}, {168, 195},
{174, 194}, {37, 72}, {191, 210}, {186, 215}, {161, 204}, {40, 70}, {142, 225},
{178, 221}, {22, 102}, {21, 103}, {144, 226}, {18, 97}, {171, 216}, {33, 85},
{185, 205}, {47, 91}, {8, 125}, {173, 216}, {167, 210}, {148, 226}, {170, 220},
{159, 232}, {153, 225}, {154, 227}, {12, 118}, {161, 219}, {13, 119}, {171,
215}, {145, 239}, {23, 104}, {53, 74}, {32, 95}, {40, 169}, {59, 186}, {49,
176}, {98, 227}, {6, 133}, {39, 163}, {116, 240}, {16, 150}, {72, 207}, {19,
155}, {68, 204}, {38, 175}, {66, 203}, {92, 213}, {80, 218}, {65, 202}, {93,
214}, {40, 164}, {20, 154}, {39, 168}, {80, 223}, {79, 222}, {120, 236}, {71,
210}, {124, 233}, {43, 179}, {31, 134}, {69, 220}, {73, 211}, {4, 159}, {74,
214}, {26, 135}, {61, 160}, {63, 161}, {95, 193}, {45, 178}, {48, 175}, {46,
177}, {124, 220}, {127, 222}, {28, 191}, {126, 221}, {50, 145}, {27, 190}, {56,
158}, {127, 217}, {57, 159}, {32, 135}, {8, 162}, {55, 157}, {54, 156}, {101,
207}, {112, 218}, {113, 219}, {96, 205}, {99, 206}, {52, 154}, {53, 155}, {81,
225}, {123, 203}, {122, 202}, {34, 144}, {34, 145}, {83, 224}, {29, 169}, {38,
147}, {45, 152}, {109, 216}, {47, 153}, {126, 200}, {100, 210}, {111, 217},
{110, 217}, {62, 134}, {87, 239}, {48, 137}, {35, 153}, {49, 138}, {123, 192},
{106, 209}, {118, 205}, {88, 228}, {107, 215}, {41, 151}, {64, 129}, {78, 140},
{124, 190}, {93, 159}, {98, 161}, {121, 189}, {122, 191}, {77, 139}, {1, 198},
{73, 142}, {121, 190}, {90, 147}, {116, 189}, {15, 197}, {74, 128}, {75, 129},
{78, 132}, {79, 133}, {102, 172}, {113, 187}, {85, 158}, {37, 233}, {37, 232},
{76, 130}, {77, 131}, {82, 156}, {115, 188}, {58, 234}, {114, 162}, {103, 182},
{7, 212}, {100, 183}, {96, 180}, {113, 165}, {99, 182}, {107, 190}, {108, 185},
{111, 186}, {115, 166}, {80, 134}, {81, 135}, {98, 180}, {99, 181}, {114, 164},
{60, 235}, {2, 219}, {127, 166}, {86, 143}, {105, 179}, {83, 136}, {84, 143},
{85, 142}, {102, 189}, {103, 188}, {1, 221}, {61, 225}, {3, 223}, {56, 229},
{63, 226}, {101, 184}, {30, 192}, {70, 152}, {92, 130}, {104, 183}, {77, 172},
{64, 162}, {68, 166}, {65, 163}, {74, 168}, {75, 169}, {91, 184}, {7, 227}, {79,
171}, {94, 187}, {107, 142}, {66, 164}, {67, 165}, {76, 170}, {119, 145}, {3,
228}, {89, 176}, {125, 148}, {91, 178}, {35, 201}, {90, 177}, {126, 149}, {95,
180}, {94, 179}, {122, 151}, {33, 206}, {72, 167}, {17, 231}, {88, 175}, {41,
209}, {100, 156}, {101, 157}, {78, 180}, {55, 204}, {80, 172}, {81, 173}, {82,
174}, {42, 215}, {54, 203}, {121, 132}, {86, 168}, {87, 169}, {108, 146}, {17,
238} }>;
(II) A more general form is to represent the graph as the orbit of {70, 71}
under the group generated by the following permutations:
a: (2, 221, 198, 4)(3, 112, 150, 18)(5, 178, 138, 19)(6, 106, 192, 33)(7, 8,
144, 168)(9, 126, 213, 11)(10, 218, 216, 94)(12, 231, 136, 36)(13, 209, 207,
85)(14, 15, 226, 86)(16, 97, 223, 79)(17, 83, 116, 27)(20, 45, 237, 155)(21, 46,
30, 63)(22, 162, 183, 195)(23, 201, 74, 227)(24, 149, 233, 26)(25, 236, 109,
179)(28, 41, 72, 158)(29, 47, 176, 143)(31, 42, 80, 171)(32, 111, 240, 190)(34,
39, 212, 125)(35, 128, 222, 87)(37, 56, 58, 151)(40, 225, 82, 77)(43, 89, 200,
92)(44, 230, 214, 98)(48, 123, 206, 133)(49, 84, 59, 91)(50, 228, 55, 211)(51,
152, 173, 187)(52, 105, 60, 120)(53, 154, 104, 235)(54, 185, 124, 135)(57, 238,
224, 189)(61, 76, 172, 164)(62, 186, 184, 107)(64, 100, 146, 71)(65, 193, 127,
239)(66, 118, 170, 196)(67, 229, 234, 122)(68, 99, 147, 175)(69, 197, 148,
96)(70, 81, 156, 108)(73, 145, 163, 157)(75, 167, 194, 191)(88, 204, 182,
90)(93, 161, 103, 177)(95, 217, 199, 121)(101, 142, 119, 139)(102, 114, 160,
130)(110, 140, 132, 180)(113, 115, 208, 232)(129, 210)(131, 169, 153, 174)(134,
215)(137, 203, 205, 220)(141, 159, 219, 188)(165, 166, 181, 202) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 221, 4, 198)(3, 168, 7, 112)(5, 126, 11, 138)(6, 74, 14, 55)(8, 150, 18,
144)(9, 188, 19, 141)(10, 86, 22, 106)(12, 72, 26, 49)(13, 214, 29, 204)(15,
216, 33, 183)(16, 97, 34, 125)(17, 27, 37, 56)(20, 200, 43, 237)(21, 53, 46,
25)(23, 192, 50, 226)(24, 224, 36, 208)(28, 136, 59, 149)(30, 109, 63, 104)(31,
35, 64, 73)(32, 190, 67, 229)(38, 82, 78, 40)(39, 212, 79, 223)(41, 115, 84,
189)(42, 96, 71, 48)(44, 207, 90, 176)(45, 93, 92, 161)(47, 173, 85, 160)(51,
143, 102, 209)(52, 120, 105, 60)(54, 199, 66, 181)(57, 233, 113, 231)(58, 83,
116, 151)(61, 153, 81, 142)(62, 121, 75, 166)(65, 129, 127, 134)(68, 119, 132,
169)(69, 157, 133, 128)(70, 175, 76, 180)(80, 163, 146, 222)(87, 123, 145,
148)(88, 130, 98, 152)(89, 103, 155, 177)(91, 232, 158, 238)(94, 201, 162,
211)(95, 124, 165, 170)(99, 156, 140, 164)(100, 197, 171, 206)(101, 147, 174,
110)(107, 118, 167, 135)(108, 131, 172, 139)(111, 240, 122, 234)(114, 182, 187,
230)(137, 215, 205, 210)(154, 236, 179, 235)(159, 213, 219, 178)(184, 202, 194,
217)(185, 191, 196, 186)(193, 220)(195, 227, 218, 228)(203, 239)
c: (1, 2, 9, 24, 54, 203, 123, 97, 35, 153, 225, 81, 135, 32, 95, 193, 128, 74,
53, 120, 117, 105, 104, 23, 87, 239, 199, 240, 185, 108, 77, 131, 222, 79, 133,
220, 124, 233, 213, 198)(3, 39, 71, 211, 109, 177, 178, 12, 75, 234, 83, 36,
204, 10, 163, 210, 73, 216, 90, 231, 27, 67, 194, 136, 19, 161, 25, 228, 100,
125, 150, 50, 230, 91, 118, 129, 196, 84, 98, 55)(4, 219, 89, 88, 156, 148, 192,
18, 201, 47, 61, 64, 137, 62, 180, 157, 223, 168, 22, 236, 52, 46, 45, 44, 169,
181, 224, 116, 149, 51, 139, 191, 127, 171, 147, 170, 190, 37, 158, 138)(5, 41,
58, 111, 66, 68, 42, 65, 167, 142, 173, 26, 17, 57, 165, 174, 214, 155, 63, 60,
179, 183, 8, 16, 145, 140, 184, 205, 146, 172, 143, 227, 112, 6, 69, 70, 182,
92, 141, 221)(7, 218, 21, 14, 152, 103, 29, 208, 188, 59, 151, 115, 186, 122,
166, 215, 202, 229, 107, 232, 56, 49, 159, 113, 176, 93, 187, 226, 30, 94, 144,
15, 31, 34, 197, 134, 96, 212, 80, 86)(11, 238, 114, 175, 82, 132, 207, 33, 235,
43, 160, 162, 48, 119, 78, 101, 206, 195, 102, 200, 154, 106, 13, 110, 40, 99,
130, 189, 126, 20, 209, 28, 217, 164, 38, 76, 121, 72, 85, 237)
C4[ 240, 78 ]
240
-1 198 221 2 4
-2 1 5 9 219
-3 223 6 228 10
-4 11 1 159 19
-5 12 2 59 20
-6 133 13 3 21
-7 22 14 212 227
-8 23 15 125 162
-9 89 2 24 41
-10 3 25 51 42
-11 4 26 28 43
-12 44 5 27 118
-13 45 6 28 119
-14 46 69 7 29
-15 47 8 30 197
-16 48 150 31 87
-17 231 49 238 32
-18 33 50 94 97
-19 155 36 4 84
-20 154 5 51 85
-21 103 6 52 86
-22 102 71 7 53
-23 44 104 8 87
-24 88 58 9 54
-25 55 89 60 10
-26 11 56 90 135
-27 12 57 91 190
-28 11 13 58 191
-29 14 59 92 169
-30 15 60 93 192
-31 134 16 61 94
-32 135 17 62 95
-33 18 63 85 206
-34 144 145 96 64
-35 201 97 65 153
-36 66 116 19 98
-37 67 232 233 72
-38 99 68 147 175
-39 100 69 168 163
-40 101 70 169 164
-41 209 151 9 75
-42 215 97 10 76
-43 11 47 102 179
-44 110 12 23 103
-45 13 178 104 152
-46 177 14 105 106
-47 91 15 43 153
-48 16 137 106 175
-49 176 17 138 107
-50 90 145 18 109
-51 115 20 108 10
-52 154 117 21 109
-53 22 155 74 120
-54 111 24 156 203
-55 112 25 157 204
-56 113 26 158 229
-57 114 27 159 95
-58 24 234 115 28
-59 5 116 29 186
-60 25 235 117 30
-61 225 160 118 31
-62 134 84 119 32
-63 33 226 161 120
-64 34 81 129 162
-65 121 35 202 163
-66 122 36 203 164
-67 165 37 118 75
-68 166 123 38 204
-69 110 220 14 39
-70 124 71 40 152
-71 22 210 70 125
-72 167 37 126 207
-73 211 125 127 142
-74 168 214 128 53
-75 67 169 41 129
-76 82 170 42 130
-77 139 172 108 131
-78 110 132 180 140
-79 133 112 222 171
-80 134 223 172 218
-81 135 225 173 64
-82 156 119 174 76
-83 111 136 224 84
-84 143 83 62 19
-85 33 158 20 142
-86 143 168 96 21
-87 23 169 16 239
-88 24 93 228 175
-89 176 25 114 9
-90 177 26 147 50
-91 178 47 27 184
-92 213 29 130 109
-93 88 159 214 30
-94 187 179 18 31
-95 57 180 193 32
-96 34 180 205 86
-97 35 123 18 42
-98 36 180 161 227
-99 38 181 182 206
-100 210 156 39 183
-101 157 40 184 207
-102 22 189 172 43
-103 44 188 182 21
-104 23 45 105 183
-105 46 179 104 117
-106 209 46 112 48
-107 190 49 215 142
-108 77 146 51 185
-109 92 50 216 52
-110 44 78 69 217
-111 83 217 54 186
-112 55 79 106 218
-113 165 187 56 219
-114 89 57 162 164
-115 166 188 58 51
-116 189 36 59 240
-117 60 105 52 120
-118 12 67 61 205
-119 13 145 82 62
-120 236 117 63 53
-121 132 189 190 65
-122 66 191 202 151
-123 68 192 203 97
-124 220 233 190 70
-125 71 148 73 8
-126 221 200 72 149
-127 166 222 73 217
-128 223 193 74 174
-129 146 194 64 75
-130 92 224 195 76
-131 77 143 222 191
-132 121 78 148 214
-133 220 79 147 6
-134 80 62 184 31
-135 26 81 137 32
-136 214 83 138 196
-137 135 48 196 197
-138 198 136 49 237
-139 77 209 163 186
-140 78 199 197 230
-141 198 177 189 208
-142 225 73 85 107
-143 200 84 86 131
-144 34 201 226 183
-145 34 50 239 119
-146 212 129 195 108
-147 133 90 202 38
-148 132 125 203 226
-149 126 204 151 185
-150 211 16 192 216
-151 122 149 41 208
-152 45 70 218 208
-153 35 167 47 225
-154 227 52 162 20
-155 187 19 53 207
-156 187 100 82 54
-157 55 101 212 193
-158 56 213 194 85
-159 232 57 4 93
-160 200 61 183 238
-161 204 63 98 219
-162 154 114 8 64
-163 39 139 228 65
-164 66 114 171 40
-165 67 113 193 175
-166 68 115 127 229
-167 210 72 229 153
-168 39 74 195 86
-169 29 40 75 87
-170 220 231 229 76
-171 79 215 216 164
-172 77 80 102 196
-173 232 81 237 216
-174 176 82 128 194
-175 88 165 48 38
-176 89 49 226 174
-177 46 90 141 230
-178 231 45 221 91
-179 94 105 228 43
-180 78 95 96 98
-181 99 234 239 208
-182 99 211 233 103
-183 100 144 104 160
-184 101 134 91 240
-185 149 205 108 240
-186 111 59 215 139
-187 155 156 113 94
-188 221 103 224 115
-189 121 102 116 141
-190 121 124 27 107
-191 122 210 28 131
-192 123 150 30 207
-193 165 157 95 128
-194 234 158 129 174
-195 146 168 235 130
-196 234 136 137 172
-197 212 15 137 140
-198 1 213 138 141
-199 224 140 239 240
-200 143 126 236 160
-201 144 35 235 230
-202 122 232 147 65
-203 66 123 148 54
-204 55 68 149 161
-205 96 118 206 185
-206 33 99 223 205
-207 155 101 192 72
-208 181 151 141 152
-209 237 106 139 41
-210 100 167 191 71
-211 236 182 73 150
-212 146 157 7 197
-213 198 233 92 158
-214 132 136 93 74
-215 171 107 42 186
-216 171 150 173 109
-217 110 111 127 238
-218 112 80 236 152
-219 2 113 161 238
-220 133 69 124 170
-221 1 188 178 126
-222 79 127 227 131
-223 3 80 128 206
-224 188 199 83 130
-225 81 61 142 153
-226 176 144 148 63
-227 154 222 7 98
-228 88 3 179 163
-229 56 166 167 170
-230 231 177 201 140
-231 178 170 17 230
-232 37 202 159 173
-233 124 37 213 182
-234 58 181 194 196
-235 201 60 237 195
-236 200 211 218 120
-237 209 235 138 173
-238 17 160 217 219
-239 199 145 181 87
-240 199 116 184 185
0