[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 240, 78 ]. See Glossary for some
detail.
UG(ATD[240, 118]) = UG(ATD[240, 119]) = UG(Rmap(480, 13) { 12, 4| 12}_ 40)
= MG(Rmap(240,101) { 12, 12| 20}_ 12) = DG(Rmap(240,101) { 12, 12| 20}_ 12) =
MG(Rmap(240,367) { 12, 40| 20}_ 40)
= DG(Rmap(240,369) { 40, 12| 20}_ 40) = UG(Cmap(480, 23) { 24, 4| 40}_ 30) =
UG(Cmap(480, 26) { 24, 4| 40}_ 30)
= MG(Cmap(240, 57) { 24, 24| 15}_ 40) = MG(Cmap(240, 58) { 24, 24| 15}_ 40) =
BGCG(UG(ATD[120,69]); K1;3)
= AT[240, 17]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 4 | - | - | - | - | - | 0 | - | 0 |
2 | 0 20 | - | - | - | - | - | 0 | - | 0 | - |
3 | - | - | - | 0 4 | - | - | - | 8 | 21 | - |
4 | - | - | 0 20 | - | - | - | 16 | - | - | 9 |
5 | - | - | - | - | - | 0 4 | 1 | - | - | 16 |
6 | - | - | - | - | 0 20 | - | - | 5 | 8 | - |
7 | - | 0 | - | 8 | 23 | - | - | - | - | 22 |
8 | 0 | - | 16 | - | - | 19 | - | - | 14 | - |
9 | - | 0 | 3 | - | - | 16 | - | 10 | - | - |
10 | 0 | - | - | 15 | 8 | - | 2 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 20 | - | - | 0 1 | - | - | - | - | - |
2 | 0 4 | - | - | 0 17 | - | - | - | - | - | - |
3 | - | - | - | - | 8 | 0 20 | - | - | - | 0 |
4 | - | 0 7 | - | - | - | 8 | - | - | - | 22 |
5 | 0 23 | - | 16 | - | - | - | - | 20 | - | - |
6 | - | - | 0 4 | 16 | - | - | - | 6 | - | - |
7 | - | - | - | - | - | - | - | 2 13 | 0 20 | - |
8 | - | - | - | - | 4 | 18 | 11 22 | - | - | - |
9 | - | - | - | - | - | - | 0 4 | - | - | 3 8 |
10 | - | - | 0 | 2 | - | - | - | - | 16 21 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 23 | 0 | - | - | - | - | - | - | - | 0 |
2 | 0 | 5 19 | - | - | - | 0 | - | - | - | - |
3 | - | - | - | 0 | 0 | 7 | 0 | - | - | - |
4 | - | - | 0 | - | - | - | - | 0 | 0 | 13 |
5 | - | - | 0 | - | - | - | 21 | - | 18 | 9 |
6 | - | 0 | 17 | - | - | - | 10 | - | 21 | - |
7 | - | - | 0 | - | 3 | 14 | - | 6 | - | - |
8 | - | - | - | 0 | - | - | 18 | - | 9 | 2 |
9 | - | - | - | 0 | 6 | 3 | - | 15 | - | - |
10 | 0 | - | - | 11 | 15 | - | - | 22 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 1 39 | 0 | - | - | - | 0 |
2 | 0 | - | 23 | 23 | 23 | - |
3 | - | 17 | 3 37 | - | - | 31 |
4 | - | 17 | - | 13 27 | - | 35 |
5 | - | 17 | - | - | 9 31 | 29 |
6 | 0 | - | 9 | 5 | 11 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | 0 14 | - |
2 | 0 | - | - | 0 8 | 0 | - | - | - |
3 | 0 | - | - | - | 5 | 0 2 | - | - |
4 | - | 0 22 | - | - | - | - | 5 | 0 |
5 | - | 0 | 25 | - | - | - | - | 1 5 |
6 | - | - | 0 28 | - | - | - | 25 | 15 |
7 | 0 16 | - | - | 25 | - | 5 | - | - |
8 | - | - | - | 0 | 25 29 | 15 | - | - |