C4graphGraph forms for C4 [ 240, 80 ] = UG(ATD[240,123])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 80 ] = UG(ATD[240,123]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {42, 43}, {228, 229}, {138, 139}, {76, 78}, {237, 239}, {173, 175}, {124, 126}, {1, 2}, {173, 174}, {21, 22}, {34, 38}, {1, 4}, {218, 223}, {177, 180}, {56, 61}, {2, 7}, {121, 127}, {144, 150}, {1, 6}, {210, 213}, {136, 143}, {49, 57}, {68, 76}, {133, 140}, {231, 238}, {49, 59}, {97, 107}, {3, 8}, {33, 42}, {81, 90}, {133, 142}, {134, 141}, {3, 15}, {181, 185}, {67, 79}, {5, 9}, {118, 122}, {86, 91}, {229, 232}, {213, 216}, {161, 172}, {39, 41}, {195, 205}, {1, 14}, {227, 236}, {148, 155}, {71, 72}, {55, 56}, {69, 85}, {161, 177}, {8, 25}, {225, 240}, {136, 153}, {139, 153}, {104, 123}, {2, 22}, {162, 182}, {11, 31}, {10, 30}, {9, 29}, {8, 28}, {5, 17}, {4, 16}, {3, 23}, {135, 146}, {167, 178}, {133, 147}, {165, 179}, {39, 48}, {160, 183}, {132, 157}, {134, 159}, {46, 52}, {196, 222}, {196, 223}, {4, 24}, {170, 182}, {73, 85}, {46, 50}, {7, 27}, {6, 26}, {5, 25}, {40, 55}, {20, 53}, {207, 238}, {147, 178}, {14, 44}, {86, 114}, {212, 240}, {72, 109}, {6, 32}, {197, 227}, {144, 183}, {200, 239}, {82, 120}, {196, 238}, {192, 234}, {141, 166}, {12, 32}, {193, 237}, {157, 177}, {13, 33}, {84, 121}, {201, 228}, {199, 234}, {16, 62}, {17, 63}, {83, 125}, {90, 116}, {129, 175}, {128, 175}, {201, 230}, {18, 34}, {66, 114}, {21, 37}, {20, 36}, {19, 35}, {137, 185}, {71, 118}, {215, 230}, {4, 54}, {217, 235}, {15, 61}, {14, 60}, {11, 57}, {10, 56}, {5, 55}, {71, 116}, {150, 165}, {131, 183}, {70, 115}, {73, 124}, {129, 180}, {2, 52}, {216, 238}, {214, 224}, {13, 59}, {12, 58}, {3, 53}, {76, 122}, {19, 36}, {88, 96}, {152, 160}, {209, 232}, {21, 47}, {66, 120}, {76, 119}, {203, 240}, {157, 166}, {146, 169}, {11, 55}, {211, 239}, {74, 118}, {72, 117}, {220, 225}, {94, 96}, {222, 224}, {88, 103}, {219, 228}, {214, 233}, {18, 83}, {44, 109}, {42, 107}, {40, 105}, {38, 103}, {36, 101}, {34, 99}, {24, 90}, {51, 113}, {50, 112}, {32, 98}, {29, 95}, {28, 94}, {25, 91}, {37, 102}, {143, 204}, {60, 127}, {45, 110}, {41, 106}, {16, 84}, {140, 200}, {19, 87}, {18, 86}, {17, 85}, {10, 79}, {23, 82}, {26, 92}, {169, 239}, {27, 93}, {23, 80}, {174, 233}, {171, 236}, {154, 221}, {43, 108}, {37, 98}, {35, 100}, {30, 86}, {170, 226}, {163, 235}, {142, 198}, {57, 113}, {31, 87}, {7, 78}, {153, 208}, {151, 221}, {167, 237}, {162, 232}, {152, 210}, {6, 77}, {53, 126}, {20, 88}, {151, 219}, {54, 123}, {145, 220}, {138, 199}, {166, 232}, {9, 70}, {39, 104}, {38, 105}, {22, 89}, {155, 203}, {144, 193}, {18, 64}, {177, 227}, {143, 221}, {37, 119}, {23, 69}, {130, 208}, {159, 204}, {45, 121}, {179, 231}, {20, 65}, {131, 214}, {132, 220}, {149, 205}, {17, 75}, {179, 233}, {141, 215}, {62, 100}, {130, 216}, {11, 80}, {158, 197}, {15, 83}, {190, 226}, {24, 68}, {19, 79}, {12, 81}, {143, 209}, {158, 192}, {13, 82}, {156, 195}, {48, 111}, {45, 77}, {175, 207}, {182, 212}, {34, 70}, {188, 216}, {43, 79}, {36, 64}, {137, 237}, {38, 67}, {35, 69}, {172, 202}, {138, 236}, {187, 211}, {191, 215}, {142, 231}, {21, 121}, {181, 217}, {164, 200}, {178, 223}, {41, 71}, {136, 230}, {26, 117}, {168, 199}, {9, 120}, {147, 226}, {49, 67}, {176, 194}, {184, 203}, {174, 218}, {149, 224}, {187, 206}, {167, 210}, {161, 212}, {10, 124}, {186, 204}, {24, 111}, {145, 230}, {33, 88}, {42, 83}, {181, 207}, {191, 197}, {139, 240}, {154, 225}, {144, 235}, {63, 67}, {29, 96}, {164, 217}, {41, 84}, {30, 96}, {148, 234}, {31, 97}, {28, 99}, {169, 214}, {168, 215}, {158, 225}, {46, 81}, {91, 219}, {102, 231}, {59, 185}, {89, 218}, {57, 189}, {70, 192}, {16, 151}, {14, 134}, {93, 213}, {72, 193}, {75, 194}, {78, 196}, {89, 211}, {111, 229}, {87, 219}, {58, 180}, {77, 195}, {35, 172}, {51, 163}, {43, 186}, {87, 197}, {47, 188}, {92, 200}, {7, 146}, {95, 202}, {117, 224}, {44, 187}, {94, 201}, {12, 148}, {13, 149}, {15, 150}, {127, 229}, {8, 147}, {59, 160}, {47, 180}, {56, 164}, {62, 162}, {91, 199}, {60, 161}, {89, 198}, {22, 183}, {61, 156}, {39, 134}, {28, 189}, {25, 184}, {116, 213}, {27, 185}, {109, 207}, {114, 209}, {125, 222}, {33, 133}, {106, 206}, {126, 218}, {58, 159}, {108, 201}, {119, 210}, {26, 188}, {54, 158}, {102, 206}, {52, 157}, {122, 211}, {45, 135}, {97, 203}, {48, 155}, {102, 205}, {108, 192}, {53, 152}, {119, 217}, {51, 156}, {62, 145}, {99, 204}, {110, 193}, {40, 152}, {97, 209}, {63, 142}, {94, 236}, {98, 208}, {113, 194}, {117, 198}, {126, 205}, {44, 153}, {47, 154}, {52, 130}, {99, 212}, {116, 195}, {50, 138}, {29, 162}, {111, 208}, {68, 132}, {110, 174}, {107, 168}, {125, 190}, {95, 155}, {108, 170}, {120, 190}, {68, 131}, {93, 150}, {98, 169}, {105, 165}, {74, 135}, {101, 171}, {93, 140}, {78, 156}, {48, 227}, {101, 182}, {63, 235}, {104, 188}, {27, 206}, {101, 176}, {60, 234}, {103, 191}, {115, 171}, {105, 176}, {51, 233}, {107, 176}, {30, 194}, {100, 184}, {58, 228}, {75, 149}, {74, 148}, {114, 172}, {84, 139}, {103, 184}, {112, 145}, {64, 163}, {115, 151}, {65, 164}, {95, 186}, {106, 131}, {109, 132}, {80, 186}, {81, 187}, {106, 129}, {73, 165}, {75, 167}, {74, 166}, {110, 130}, {118, 154}, {69, 168}, {49, 223}, {82, 163}, {92, 173}, {112, 129}, {64, 178}, {65, 179}, {46, 221}, {123, 136}, {73, 189}, {125, 137}, {124, 137}, {40, 222}, {90, 173}, {112, 135}, {50, 202}, {77, 181}, {104, 146}, {122, 128}, {61, 198}, {80, 171}, {100, 159}, {123, 128}, {32, 220}, {54, 202}, {92, 160}, {31, 226}, {66, 191}, {113, 140}, {115, 141}, {65, 190}, {66, 189}, {85, 170}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {42, 43} under the group generated by the following permutations:

a: (1, 2)(3, 69)(4, 7)(5, 189)(6, 52)(8, 85)(9, 57)(10, 86)(11, 120)(12, 110)(13, 171)(14, 22)(15, 35)(16, 27)(17, 28)(18, 79)(19, 83)(20, 107)(21, 44)(24, 146)(25, 73)(26, 157)(29, 113)(31, 190)(32, 130)(33, 101)(34, 67)(36, 42)(37, 153)(39, 131)(40, 191)(41, 106)(43, 64)(45, 81)(46, 77)(47, 109)(48, 214)(49, 70)(50, 195)(51, 95)(53, 168)(54, 78)(55, 66)(56, 114)(58, 193)(59, 115)(60, 89)(61, 172)(62, 93)(63, 99)(65, 97)(68, 104)(71, 129)(72, 180)(74, 173)(75, 94)(76, 123)(80, 82)(84, 206)(87, 125)(88, 176)(90, 135)(91, 124)(92, 166)(96, 194)(98, 208)(100, 150)(102, 139)(103, 105)(108, 178)(111, 169)(112, 116)(117, 177)(118, 175)(119, 136)(121, 187)(122, 128)(126, 199)(127, 211)(132, 188)(133, 182)(134, 183)(137, 219)(138, 205)(140, 162)(141, 160)(142, 212)(143, 217)(144, 159)(145, 213)(147, 170)(148, 174)(149, 236)(151, 185)(152, 215)(154, 207)(155, 233)(156, 202)(158, 196)(161, 198)(163, 186)(164, 209)(165, 184)(167, 201)(179, 203)(181, 221)(192, 223)(197, 222)(200, 232)(204, 235)(210, 230)(216, 220)(218, 234)(224, 227)(225, 238)(228, 237)(229, 239)(231, 240)
b: (2, 6)(3, 10)(4, 14)(5, 18)(7, 26)(8, 30)(9, 34)(11, 42)(12, 46)(13, 49)(15, 56)(16, 60)(17, 64)(19, 69)(20, 73)(21, 45)(22, 77)(23, 79)(24, 44)(25, 86)(27, 92)(28, 96)(29, 99)(31, 107)(32, 52)(33, 57)(36, 85)(37, 110)(38, 120)(39, 123)(40, 125)(41, 128)(43, 80)(47, 135)(48, 136)(50, 58)(51, 142)(53, 124)(54, 134)(55, 83)(62, 161)(63, 163)(65, 165)(66, 103)(67, 82)(68, 109)(71, 122)(72, 76)(74, 154)(75, 178)(78, 117)(84, 127)(87, 168)(88, 189)(89, 195)(90, 187)(93, 200)(95, 204)(98, 130)(100, 172)(101, 170)(102, 174)(105, 190)(106, 175)(108, 171)(111, 153)(112, 180)(113, 133)(114, 184)(115, 192)(116, 211)(119, 193)(131, 207)(137, 152)(138, 228)(139, 229)(141, 158)(143, 155)(144, 217)(145, 177)(146, 188)(147, 194)(148, 221)(149, 223)(150, 164)(151, 234)(156, 198)(157, 220)(159, 202)(160, 185)(162, 212)(166, 225)(169, 216)(173, 206)(176, 226)(181, 183)(196, 224)(197, 215)(199, 219)(201, 236)(203, 209)(205, 218)(210, 237)(213, 239)(214, 238)(227, 230)(231, 233)(232, 240)
c: (2, 4)(3, 120)(5, 83)(6, 14)(7, 16)(8, 190)(9, 15)(10, 38)(11, 64)(12, 109)(13, 69)(17, 42)(18, 55)(19, 49)(20, 189)(21, 123)(22, 54)(23, 82)(24, 52)(25, 125)(26, 60)(27, 62)(28, 65)(29, 150)(30, 105)(31, 178)(32, 44)(33, 85)(34, 56)(35, 59)(36, 57)(37, 136)(39, 45)(40, 86)(41, 135)(43, 63)(46, 68)(47, 128)(48, 110)(50, 131)(51, 171)(53, 66)(58, 207)(61, 70)(67, 79)(71, 74)(72, 148)(73, 88)(75, 107)(76, 221)(77, 134)(78, 151)(80, 163)(81, 132)(84, 146)(87, 223)(89, 158)(90, 157)(91, 222)(92, 161)(93, 162)(94, 179)(95, 144)(96, 165)(97, 167)(98, 153)(99, 164)(100, 185)(101, 113)(102, 230)(103, 124)(104, 121)(106, 112)(108, 142)(111, 130)(114, 152)(115, 156)(116, 166)(117, 234)(119, 143)(122, 154)(126, 191)(127, 188)(133, 170)(137, 184)(138, 214)(139, 169)(140, 182)(141, 195)(145, 206)(147, 226)(149, 168)(155, 193)(159, 181)(160, 172)(173, 177)(174, 227)(175, 180)(176, 194)(183, 202)(186, 235)(187, 220)(192, 198)(196, 219)(197, 218)(199, 224)(200, 212)(201, 231)(203, 237)(204, 217)(205, 215)(209, 210)(211, 225)(213, 232)(216, 229)(228, 238)(233, 236)(239, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 80 ]
240
-1 2 14 4 6
-2 22 1 7 52
-3 23 15 8 53
-4 1 24 16 54
-5 55 25 17 9
-6 77 1 26 32
-7 78 2 146 27
-8 3 25 147 28
-9 70 5 29 120
-10 56 79 124 30
-11 55 57 80 31
-12 58 81 148 32
-13 33 59 82 149
-14 44 1 134 60
-15 3 61 83 150
-16 4 62 84 151
-17 5 63 85 75
-18 34 83 64 86
-19 35 79 36 87
-20 88 36 53 65
-21 22 121 47 37
-22 89 2 183 21
-23 3 69 80 82
-24 111 68 90 4
-25 91 5 8 184
-26 188 92 6 117
-27 93 7 206 185
-28 99 189 94 8
-29 95 96 162 9
-30 194 96 86 10
-31 11 226 97 87
-32 220 12 6 98
-33 88 133 13 42
-34 99 70 38 18
-35 100 69 172 19
-36 101 19 20 64
-37 102 119 21 98
-38 34 67 103 105
-39 134 48 104 41
-40 55 222 105 152
-41 71 39 84 106
-42 33 83 107 43
-43 79 42 108 186
-44 187 14 109 153
-45 77 110 121 135
-46 221 81 50 52
-47 154 188 180 21
-48 111 155 39 227
-49 67 57 223 59
-50 46 112 202 138
-51 156 233 113 163
-52 2 46 157 130
-53 3 126 20 152
-54 123 4 158 202
-55 11 56 5 40
-56 55 61 10 164
-57 11 189 113 49
-58 12 180 159 228
-59 13 49 160 185
-60 14 234 127 161
-61 198 56 156 15
-62 100 145 16 162
-63 67 235 17 142
-64 178 36 18 163
-65 179 190 20 164
-66 189 114 191 120
-67 79 38 49 63
-68 132 24 76 131
-69 23 35 168 85
-70 34 115 192 9
-71 72 116 41 118
-72 71 193 117 109
-73 165 189 124 85
-74 166 135 148 118
-75 167 17 149 194
-76 78 122 68 119
-77 45 181 6 195
-78 156 7 196 76
-79 67 19 10 43
-80 11 23 171 186
-81 187 12 46 90
-82 23 13 163 120
-83 15 125 18 42
-84 121 16 139 41
-85 69 170 17 73
-86 91 114 18 30
-87 19 31 197 219
-88 33 103 96 20
-89 22 198 211 218
-90 24 81 116 173
-91 199 25 86 219
-92 200 26 160 173
-93 213 27 150 140
-94 201 236 28 96
-95 155 202 29 186
-96 88 94 29 30
-97 209 203 107 31
-98 37 169 32 208
-99 34 212 28 204
-100 35 159 62 184
-101 176 36 171 182
-102 231 37 205 206
-103 88 191 38 184
-104 188 123 146 39
-105 165 176 38 40
-106 41 129 206 131
-107 176 168 42 97
-108 201 170 192 43
-109 44 132 72 207
-110 45 193 130 174
-111 24 48 229 208
-112 145 135 50 129
-113 57 51 194 140
-114 66 209 172 86
-115 70 171 151 141
-116 90 213 71 195
-117 198 26 224 72
-118 154 122 71 74
-119 210 37 217 76
-120 66 190 82 9
-121 45 127 84 21
-122 211 128 118 76
-123 136 104 128 54
-124 126 137 73 10
-125 222 190 137 83
-126 124 205 53 218
-127 121 60 128 229
-128 122 123 127 175
-129 112 180 106 175
-130 110 216 52 208
-131 68 214 106 183
-132 220 68 157 109
-133 33 147 140 142
-134 14 159 39 141
-135 45 112 146 74
-136 143 123 153 230
-137 124 125 237 185
-138 199 236 50 139
-139 138 84 240 153
-140 133 200 113 93
-141 166 134 115 215
-142 198 231 133 63
-143 209 221 136 204
-144 235 193 150 183
-145 220 112 62 230
-146 135 169 104 7
-147 133 178 226 8
-148 12 155 234 74
-149 13 224 205 75
-150 165 144 15 93
-151 221 16 115 219
-152 210 160 40 53
-153 44 136 139 208
-154 221 47 225 118
-155 48 148 203 95
-156 78 61 51 195
-157 132 166 177 52
-158 192 225 54 197
-159 100 134 58 204
-160 59 92 183 152
-161 177 212 60 172
-162 232 182 29 62
-163 235 82 51 64
-164 56 200 217 65
-165 179 105 73 150
-166 232 157 74 141
-167 210 178 237 75
-168 199 69 215 107
-169 146 214 239 98
-170 182 226 85 108
-171 101 80 115 236
-172 35 114 202 161
-173 90 92 174 175
-174 110 233 173 218
-175 128 129 173 207
-176 101 105 194 107
-177 157 180 161 227
-178 167 223 147 64
-179 165 231 233 65
-180 177 47 58 129
-181 77 217 185 207
-182 101 212 170 162
-183 22 144 160 131
-184 100 25 103 203
-185 59 27 137 181
-186 80 204 95 43
-187 44 211 81 206
-188 47 26 104 216
-189 66 57 28 73
-190 125 226 65 120
-191 66 103 215 197
-192 234 70 158 108
-193 110 144 72 237
-194 176 113 30 75
-195 77 156 116 205
-196 78 222 223 238
-197 158 191 227 87
-198 89 61 117 142
-199 91 168 234 138
-200 92 140 239 164
-201 94 228 108 230
-202 50 95 172 54
-203 155 184 97 240
-204 99 143 159 186
-205 102 126 149 195
-206 187 102 27 106
-207 181 238 109 175
-208 111 130 98 153
-209 143 232 114 97
-210 167 213 119 152
-211 187 89 122 239
-212 99 182 161 240
-213 210 93 116 216
-214 233 169 224 131
-215 168 191 141 230
-216 188 213 238 130
-217 235 181 119 164
-218 89 223 126 174
-219 91 151 228 87
-220 132 145 225 32
-221 143 154 46 151
-222 125 224 40 196
-223 178 49 196 218
-224 222 214 149 117
-225 154 220 158 240
-226 190 147 170 31
-227 177 48 236 197
-228 58 201 229 219
-229 111 232 127 228
-230 145 201 136 215
-231 102 179 238 142
-232 209 166 162 229
-233 179 214 51 174
-234 199 60 148 192
-235 144 63 217 163
-236 94 138 171 227
-237 167 137 193 239
-238 231 216 196 207
-239 200 211 169 237
-240 212 203 225 139
0

**************