C4graphGraph forms for C4 [ 240, 85 ] = UG(ATD[240,136])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 85 ] = UG(ATD[240,136]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {24, 25}, {186, 187}, {98, 99}, {164, 166}, {209, 211}, {201, 203}, {1, 2}, {201, 202}, {193, 194}, {60, 63}, {35, 39}, {201, 205}, {1, 4}, {227, 230}, {3, 6}, {89, 95}, {234, 236}, {226, 228}, {163, 165}, {2, 5}, {201, 206}, {193, 198}, {131, 132}, {83, 84}, {2, 10}, {179, 187}, {167, 175}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {85, 93}, {86, 94}, {87, 95}, {129, 136}, {209, 216}, {195, 202}, {131, 137}, {148, 159}, {228, 239}, {54, 58}, {194, 206}, {178, 190}, {135, 139}, {53, 59}, {229, 235}, {119, 121}, {55, 56}, {133, 138}, {161, 177}, {43, 58}, {199, 214}, {8, 26}, {70, 82}, {106, 126}, {101, 112}, {8, 30}, {206, 216}, {200, 222}, {9, 31}, {6, 30}, {171, 179}, {161, 185}, {9, 17}, {8, 16}, {103, 127}, {104, 113}, {233, 240}, {169, 176}, {135, 158}, {6, 28}, {134, 156}, {7, 29}, {98, 120}, {170, 177}, {235, 240}, {34, 62}, {192, 220}, {110, 114}, {4, 26}, {172, 178}, {10, 20}, {5, 27}, {100, 123}, {79, 110}, {196, 229}, {192, 225}, {151, 182}, {197, 231}, {153, 188}, {27, 50}, {196, 237}, {77, 100}, {64, 105}, {11, 32}, {65, 106}, {15, 36}, {12, 33}, {14, 35}, {13, 34}, {144, 191}, {31, 48}, {28, 51}, {137, 185}, {211, 227}, {139, 187}, {209, 224}, {30, 44}, {217, 235}, {71, 117}, {70, 116}, {66, 113}, {141, 190}, {25, 45}, {16, 37}, {139, 190}, {18, 39}, {68, 114}, {69, 115}, {17, 38}, {71, 127}, {217, 225}, {88, 96}, {82, 107}, {215, 238}, {19, 40}, {212, 239}, {210, 233}, {23, 44}, {20, 41}, {22, 43}, {72, 118}, {208, 238}, {150, 168}, {73, 119}, {21, 42}, {213, 234}, {80, 111}, {170, 234}, {165, 231}, {60, 120}, {15, 73}, {137, 207}, {145, 214}, {169, 238}, {165, 226}, {10, 66}, {15, 71}, {14, 70}, {13, 69}, {12, 68}, {11, 67}, {25, 80}, {170, 227}, {55, 126}, {54, 124}, {173, 230}, {29, 81}, {171, 231}, {50, 127}, {174, 227}, {173, 224}, {5, 75}, {171, 229}, {33, 111}, {7, 72}, {48, 96}, {188, 236}, {148, 196}, {147, 195}, {146, 194}, {52, 100}, {51, 99}, {50, 98}, {49, 97}, {55, 102}, {176, 225}, {145, 192}, {144, 193}, {1, 83}, {186, 232}, {4, 86}, {54, 101}, {132, 208}, {185, 237}, {22, 67}, {46, 123}, {21, 66}, {63, 104}, {24, 79}, {16, 72}, {19, 75}, {18, 74}, {17, 73}, {21, 76}, {142, 215}, {23, 78}, {39, 125}, {133, 223}, {22, 77}, {185, 226}, {16, 76}, {58, 102}, {17, 77}, {19, 78}, {58, 103}, {20, 73}, {57, 103}, {146, 204}, {129, 223}, {47, 112}, {182, 233}, {147, 204}, {132, 219}, {27, 123}, {175, 207}, {161, 193}, {32, 64}, {188, 221}, {50, 80}, {166, 196}, {29, 126}, {43, 78}, {175, 202}, {133, 224}, {142, 232}, {43, 76}, {184, 223}, {181, 210}, {167, 192}, {140, 228}, {143, 230}, {1, 107}, {8, 99}, {138, 225}, {135, 236}, {131, 239}, {129, 236}, {22, 121}, {168, 199}, {46, 65}, {40, 88}, {162, 210}, {47, 95}, {42, 90}, {41, 89}, {34, 83}, {166, 215}, {151, 230}, {62, 79}, {45, 92}, {38, 87}, {36, 85}, {163, 209}, {33, 82}, {147, 224}, {46, 93}, {37, 86}, {162, 214}, {184, 204}, {172, 216}, {158, 232}, {26, 109}, {191, 200}, {164, 211}, {44, 91}, {39, 80}, {35, 84}, {38, 94}, {187, 195}, {149, 237}, {53, 77}, {31, 102}, {174, 212}, {179, 207}, {191, 195}, {190, 194}, {61, 64}, {59, 68}, {162, 221}, {62, 65}, {86, 214}, {87, 215}, {112, 240}, {84, 213}, {13, 143}, {25, 155}, {90, 216}, {108, 238}, {12, 138}, {18, 149}, {72, 207}, {70, 205}, {78, 197}, {51, 191}, {88, 213}, {30, 142}, {31, 143}, {28, 141}, {37, 177}, {94, 202}, {14, 152}, {66, 212}, {26, 140}, {3, 148}, {28, 132}, {27, 128}, {119, 234}, {3, 163}, {61, 157}, {124, 220}, {20, 181}, {29, 188}, {106, 203}, {123, 218}, {10, 168}, {11, 169}, {124, 222}, {21, 182}, {61, 158}, {56, 155}, {118, 213}, {63, 155}, {108, 200}, {2, 167}, {57, 156}, {51, 150}, {59, 157}, {32, 136}, {49, 152}, {111, 198}, {36, 136}, {49, 157}, {113, 221}, {118, 218}, {119, 219}, {52, 153}, {125, 208}, {55, 154}, {96, 206}, {113, 223}, {53, 154}, {41, 153}, {42, 154}, {45, 156}, {106, 219}, {109, 220}, {34, 144}, {35, 145}, {105, 218}, {36, 144}, {53, 128}, {44, 154}, {125, 203}, {57, 143}, {56, 142}, {104, 222}, {37, 146}, {122, 205}, {47, 151}, {52, 140}, {115, 203}, {116, 204}, {117, 205}, {23, 174}, {124, 197}, {48, 138}, {97, 219}, {99, 217}, {40, 147}, {54, 141}, {45, 150}, {107, 208}, {41, 148}, {63, 130}, {90, 231}, {40, 150}, {42, 149}, {109, 173}, {116, 180}, {117, 181}, {118, 182}, {49, 240}, {94, 159}, {85, 145}, {23, 210}, {125, 184}, {47, 232}, {127, 184}, {69, 130}, {105, 174}, {117, 189}, {81, 152}, {126, 183}, {100, 173}, {105, 160}, {97, 171}, {89, 146}, {74, 134}, {121, 180}, {18, 220}, {98, 172}, {107, 164}, {120, 183}, {9, 217}, {92, 140}, {97, 177}, {109, 189}, {52, 229}, {68, 149}, {61, 239}, {7, 211}, {82, 134}, {83, 135}, {116, 160}, {104, 189}, {93, 139}, {60, 235}, {81, 137}, {71, 158}, {110, 181}, {111, 179}, {96, 189}, {108, 178}, {64, 159}, {93, 130}, {62, 222}, {65, 160}, {121, 155}, {33, 197}, {115, 151}, {76, 169}, {81, 180}, {101, 128}, {32, 198}, {101, 131}, {122, 156}, {75, 172}, {60, 212}, {46, 199}, {75, 162}, {48, 218}, {9, 226}, {74, 161}, {91, 176}, {110, 133}, {92, 176}, {115, 159}, {92, 178}, {74, 186}, {114, 130}, {24, 233}, {69, 180}, {85, 164}, {91, 170}, {87, 165}, {90, 168}, {59, 200}, {67, 183}, {91, 175}, {108, 152}, {84, 163}, {79, 183}, {112, 136}, {67, 186}, {103, 157}, {122, 128}, {38, 221}, {122, 129}, {24, 228}, {19, 237}, {57, 199}, {56, 198}, {88, 166}, {89, 167}, {120, 134}, {95, 160}, {102, 153}, {114, 141} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 83)(3, 91)(4, 107)(5, 34)(6, 176)(7, 38)(8, 238)(9, 81)(10, 135)(11, 44)(12, 82)(14, 225)(15, 221)(16, 215)(17, 29)(19, 193)(20, 236)(21, 232)(22, 55)(23, 32)(24, 101)(25, 54)(26, 208)(27, 62)(28, 92)(30, 169)(31, 180)(35, 192)(36, 162)(37, 166)(39, 220)(40, 194)(41, 234)(42, 186)(43, 56)(45, 141)(47, 182)(48, 116)(49, 235)(50, 222)(51, 178)(52, 219)(53, 183)(57, 130)(58, 155)(59, 120)(60, 157)(61, 212)(63, 103)(64, 174)(65, 123)(66, 158)(67, 154)(68, 134)(69, 143)(70, 138)(71, 113)(72, 87)(73, 188)(74, 149)(75, 144)(76, 142)(77, 126)(78, 198)(79, 128)(80, 124)(84, 167)(85, 214)(86, 164)(88, 146)(89, 213)(90, 187)(93, 199)(94, 211)(95, 118)(96, 204)(97, 229)(98, 200)(99, 108)(100, 106)(102, 121)(104, 127)(109, 125)(110, 122)(111, 197)(112, 233)(114, 156)(115, 230)(117, 223)(119, 153)(129, 181)(131, 228)(132, 140)(133, 205)(136, 210)(137, 226)(139, 168)(147, 206)(148, 170)(150, 190)(152, 217)(159, 227)(160, 218)(161, 237)(163, 175)(165, 207)(172, 191)(173, 203)(177, 196)(179, 231)(184, 189)(195, 216)(201, 224)(202, 209)
b: (1, 2)(3, 78)(4, 167)(5, 83)(6, 23)(7, 45)(8, 91)(9, 161)(10, 107)(11, 43)(12, 89)(13, 34)(14, 210)(15, 156)(16, 176)(17, 74)(18, 38)(19, 163)(20, 82)(21, 238)(22, 67)(24, 81)(25, 29)(26, 175)(27, 135)(28, 174)(30, 44)(31, 193)(32, 58)(33, 41)(35, 162)(36, 57)(37, 225)(39, 221)(40, 209)(42, 215)(46, 93)(47, 59)(48, 194)(49, 240)(50, 236)(51, 227)(52, 179)(53, 232)(54, 64)(55, 56)(60, 219)(61, 101)(62, 69)(63, 106)(65, 130)(66, 208)(68, 95)(70, 181)(71, 122)(72, 92)(73, 134)(75, 84)(76, 169)(77, 186)(79, 180)(80, 188)(85, 199)(86, 192)(87, 149)(88, 216)(90, 166)(94, 220)(96, 206)(97, 235)(98, 234)(99, 170)(100, 187)(102, 198)(103, 136)(104, 203)(105, 141)(108, 182)(109, 202)(110, 116)(111, 153)(112, 157)(113, 125)(114, 160)(115, 222)(117, 205)(118, 178)(119, 120)(121, 183)(123, 139)(124, 159)(126, 155)(127, 129)(128, 158)(131, 239)(132, 212)(133, 204)(137, 228)(138, 146)(140, 207)(142, 154)(143, 144)(145, 214)(147, 224)(148, 197)(150, 211)(151, 200)(152, 233)(164, 168)(165, 237)(171, 229)(172, 213)(173, 195)(177, 217)(184, 223)(185, 226)(189, 201)(190, 218)(191, 230)(196, 231)
c: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 23)(10, 26)(11, 29)(13, 33)(14, 36)(16, 41)(17, 44)(18, 46)(19, 48)(21, 52)(22, 55)(24, 60)(25, 63)(27, 68)(28, 71)(30, 73)(31, 78)(32, 81)(34, 82)(35, 85)(37, 89)(38, 91)(39, 93)(40, 96)(42, 100)(43, 102)(45, 104)(47, 97)(49, 112)(50, 114)(51, 117)(54, 103)(56, 121)(57, 124)(59, 128)(61, 131)(62, 134)(64, 137)(65, 74)(66, 140)(67, 126)(69, 111)(70, 144)(72, 148)(75, 138)(76, 153)(77, 154)(79, 120)(80, 130)(83, 107)(84, 164)(86, 167)(87, 170)(90, 173)(92, 113)(94, 175)(95, 177)(98, 110)(99, 181)(101, 157)(105, 185)(106, 186)(108, 129)(109, 168)(115, 179)(116, 193)(118, 196)(119, 142)(122, 200)(123, 149)(125, 139)(127, 141)(132, 158)(133, 172)(135, 208)(136, 152)(143, 197)(147, 206)(150, 189)(151, 171)(156, 222)(159, 207)(160, 161)(162, 225)(163, 211)(165, 227)(166, 213)(169, 188)(174, 226)(176, 221)(178, 223)(180, 198)(182, 229)(184, 190)(187, 203)(191, 205)(192, 214)(194, 204)(195, 201)(199, 220)(210, 217)(212, 228)(215, 234)(216, 224)(218, 237)(219, 232)(230, 231)(233, 235)(236, 238)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 85 ]
240
-1 2 4 83 107
-2 1 167 5 10
-3 11 148 6 163
-4 1 12 26 86
-5 2 13 27 75
-6 3 14 28 30
-7 211 15 72 29
-8 99 26 16 30
-9 17 226 217 31
-10 66 2 168 20
-11 67 3 169 32
-12 33 68 4 138
-13 143 34 69 5
-14 35 70 6 152
-15 36 71 7 73
-16 37 72 8 76
-17 77 38 73 9
-18 220 39 149 74
-19 78 237 40 75
-20 181 73 41 10
-21 66 182 42 76
-22 77 121 67 43
-23 44 78 210 174
-24 79 233 25 228
-25 45 155 24 80
-26 4 8 140 109
-27 123 5 50 128
-28 132 6 51 141
-29 188 81 126 7
-30 44 6 8 142
-31 143 102 48 9
-32 11 198 136 64
-33 12 111 82 197
-34 144 13 83 62
-35 145 14 39 84
-36 144 15 136 85
-37 177 146 16 86
-38 221 17 94 87
-39 35 80 125 18
-40 88 147 150 19
-41 89 148 20 153
-42 154 90 149 21
-43 22 78 58 76
-44 154 23 91 30
-45 156 25 92 150
-46 199 123 93 65
-47 232 112 95 151
-48 138 96 31 218
-49 157 97 152 240
-50 80 27 127 98
-51 99 191 28 150
-52 100 140 229 153
-53 77 154 59 128
-54 101 58 124 141
-55 154 56 102 126
-56 55 198 155 142
-57 143 199 156 103
-58 102 103 43 54
-59 68 200 157 53
-60 212 235 63 120
-61 157 158 239 64
-62 34 79 222 65
-63 155 60 104 130
-64 159 61 105 32
-65 46 160 62 106
-66 113 212 10 21
-67 11 22 183 186
-68 12 59 114 149
-69 13 180 115 130
-70 14 82 116 205
-71 15 158 127 117
-72 16 7 118 207
-73 15 17 20 119
-74 134 18 161 186
-75 5 172 19 162
-76 169 16 21 43
-77 22 100 17 53
-78 23 19 43 197
-79 110 24 62 183
-80 111 25 39 50
-81 180 137 29 152
-82 33 134 70 107
-83 1 34 135 84
-84 35 213 83 163
-85 145 36 93 164
-86 4 37 214 94
-87 165 38 215 95
-88 166 213 40 96
-89 167 146 95 41
-90 231 168 216 42
-91 44 176 170 175
-92 176 45 178 140
-93 46 139 85 130
-94 202 38 159 86
-95 89 47 160 87
-96 88 189 48 206
-97 177 49 171 219
-98 99 50 172 120
-99 51 8 217 98
-100 77 123 52 173
-101 112 128 54 131
-102 55 58 31 153
-103 57 58 157 127
-104 189 222 113 63
-105 160 64 174 218
-106 126 203 65 219
-107 1 82 164 208
-108 178 200 238 152
-109 220 189 26 173
-110 133 79 114 181
-111 33 198 80 179
-112 101 47 136 240
-113 66 221 223 104
-114 110 68 130 141
-115 69 159 203 151
-116 70 180 160 204
-117 189 71 181 205
-118 213 72 182 218
-119 121 234 73 219
-120 134 60 183 98
-121 22 155 180 119
-122 156 128 205 129
-123 100 46 27 218
-124 220 222 54 197
-125 203 39 184 208
-126 55 29 106 183
-127 103 71 50 184
-128 122 101 27 53
-129 122 223 136 236
-130 69 114 93 63
-131 132 101 137 239
-132 28 131 208 219
-133 110 223 224 138
-134 156 82 74 120
-135 158 236 83 139
-136 112 36 129 32
-137 81 185 207 131
-138 12 133 48 225
-139 187 135 190 93
-140 26 92 52 228
-141 190 114 28 54
-142 56 232 215 30
-143 13 57 31 230
-144 34 36 191 193
-145 35 192 214 85
-146 89 37 204 194
-147 224 204 40 195
-148 3 159 41 196
-149 68 237 18 42
-150 45 168 40 51
-151 47 115 182 230
-152 14 81 49 108
-153 188 102 41 52
-154 44 55 42 53
-155 121 56 25 63
-156 45 122 57 134
-157 59 103 49 61
-158 232 135 71 61
-159 115 148 94 64
-160 105 116 95 65
-161 177 193 74 185
-162 210 221 214 75
-163 165 209 3 84
-164 166 211 85 107
-165 231 226 163 87
-166 88 215 196 164
-167 89 2 192 175
-168 199 90 150 10
-169 11 176 238 76
-170 177 91 234 227
-171 231 179 97 229
-172 178 216 75 98
-173 100 224 109 230
-174 23 212 105 227
-175 167 91 202 207
-176 91 92 169 225
-177 37 170 161 97
-178 190 92 172 108
-179 187 111 171 207
-180 121 69 81 116
-181 110 210 117 20
-182 233 118 151 21
-183 67 79 126 120
-184 223 125 127 204
-185 137 226 237 161
-186 187 67 232 74
-187 179 139 195 186
-188 221 236 29 153
-189 104 117 96 109
-190 178 139 194 141
-191 144 200 51 195
-192 220 145 167 225
-193 198 144 161 194
-194 146 190 193 206
-195 187 147 191 202
-196 166 148 237 229
-197 33 231 78 124
-198 56 111 193 32
-199 46 57 168 214
-200 222 59 191 108
-201 202 203 205 206
-202 201 94 195 175
-203 201 125 115 106
-204 146 147 116 184
-205 122 201 70 117
-206 201 194 216 96
-207 179 137 72 175
-208 132 125 238 107
-209 211 224 216 163
-210 23 233 181 162
-211 209 7 227 164
-212 66 60 239 174
-213 88 234 84 118
-214 199 145 162 86
-215 166 238 87 142
-216 209 90 172 206
-217 99 235 225 9
-218 123 48 105 118
-219 132 106 97 119
-220 124 192 18 109
-221 188 113 38 162
-222 200 124 104 62
-223 133 113 129 184
-224 209 133 147 173
-225 176 192 138 217
-226 165 228 9 185
-227 211 170 174 230
-228 24 226 140 239
-229 235 171 52 196
-230 143 227 151 173
-231 165 90 171 197
-232 47 158 142 186
-233 210 24 182 240
-234 213 170 236 119
-235 60 217 229 240
-236 188 135 234 129
-237 149 19 185 196
-238 169 215 108 208
-239 212 61 228 131
-240 112 233 235 49
0

**************