[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 87 ] =
UG(ATD[240,142]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {104, 105}, {153, 155}, {181, 183}, {1, 2}, {212, 215}, {200,
203}, {1, 5}, {57, 61}, {25, 29}, {3, 7}, {2, 6}, {209, 212}, {121, 127}, {226,
228}, {122, 124}, {96, 103}, {209, 217}, {208, 217}, {99, 105}, {231, 237},
{101, 111}, {71, 76}, {213, 222}, {198, 205}, {113, 122}, {4, 8}, {229, 233},
{166, 170}, {83, 95}, {179, 190}, {195, 206}, {21, 27}, {183, 185}, {119, 121},
{36, 43}, {181, 186}, {64, 79}, {40, 56}, {140, 156}, {98, 114}, {65, 80}, {67,
82}, {2, 16}, {173, 191}, {166, 180}, {7, 21}, {6, 20}, {3, 17}, {11, 24}, {66,
81}, {15, 28}, {7, 19}, {12, 25}, {14, 27}, {100, 113}, {4, 18}, {72, 94}, {5,
19}, {101, 115}, {13, 26}, {96, 119}, {13, 21}, {77, 85}, {161, 184}, {197,
220}, {207, 213}, {234, 240}, {107, 112}, {202, 209}, {164, 184}, {165, 185},
{9, 20}, {198, 219}, {75, 86}, {10, 23}, {8, 22}, {169, 183}, {47, 49}, {33,
62}, {37, 58}, {144, 176}, {30, 63}, {205, 236}, {204, 237}, {157, 188}, {76,
109}, {68, 102}, {29, 62}, {25, 61}, {196, 224}, {131, 167}, {73, 108}, {204,
233}, {79, 106}, {84, 114}, {201, 239}, {200, 238}, {207, 232}, {22, 63}, {156,
181}, {20, 62}, {23, 60}, {74, 97}, {93, 118}, {12, 32}, {199, 235}, {195, 239},
{73, 101}, {16, 60}, {147, 190}, {159, 177}, {18, 61}, {132, 180}, {17, 35}, {7,
52}, {221, 238}, {211, 224}, {157, 174}, {145, 162}, {133, 182}, {11, 56}, {13,
57}, {15, 59}, {14, 58}, {6, 51}, {88, 110}, {215, 225}, {5, 50}, {216, 239},
{155, 172}, {30, 41}, {95, 103}, {219, 227}, {79, 118}, {158, 167}, {133, 188},
{89, 96}, {24, 35}, {141, 182}, {87, 108}, {129, 189}, {8, 53}, {31, 34}, {11,
54}, {10, 55}, {139, 181}, {9, 54}, {84, 107}, {135, 199}, {168, 232}, {24, 89},
{161, 226}, {4, 64}, {142, 202}, {47, 106}, {174, 235}, {31, 89}, {175, 233},
{26, 93}, {36, 99}, {10, 66}, {165, 237}, {147, 219}, {59, 115}, {15, 69}, {153,
211}, {138, 192}, {140, 193}, {189, 240}, {154, 215}, {48, 126}, {164, 234},
{34, 109}, {141, 194}, {46, 126}, {148, 196}, {10, 91}, {191, 238}, {180, 229},
{139, 218}, {130, 208}, {186, 232}, {151, 197}, {146, 192}, {135, 213}, {20,
64}, {134, 210}, {46, 123}, {185, 236}, {148, 193}, {23, 65}, {55, 97}, {38,
112}, {131, 212}, {149, 194}, {143, 216}, {178, 234}, {137, 208}, {24, 66},
{128, 218}, {59, 97}, {28, 70}, {25, 67}, {188, 231}, {149, 201}, {53, 104},
{132, 217}, {130, 223}, {26, 68}, {27, 69}, {50, 109}, {55, 87}, {190, 222},
{52, 85}, {40, 75}, {136, 235}, {42, 78}, {48, 84}, {43, 79}, {16, 117}, {9,
111}, {186, 220}, {22, 113}, {167, 192}, {136, 239}, {32, 71}, {41, 65}, {8,
97}, {42, 67}, {33, 72}, {38, 76}, {168, 194}, {52, 94}, {39, 77}, {34, 73},
{177, 218}, {138, 230}, {160, 204}, {191, 210}, {36, 74}, {160, 206}, {37, 75},
{13, 98}, {190, 209}, {15, 127}, {151, 231}, {61, 77}, {42, 90}, {184, 203},
{183, 195}, {40, 93}, {171, 221}, {33, 86}, {149, 237}, {182, 206}, {150, 236},
{39, 92}, {177, 202}, {44, 80}, {172, 208}, {47, 83}, {46, 82}, {45, 81}, {184,
197}, {50, 178}, {99, 227}, {19, 145}, {80, 210}, {96, 226}, {92, 223}, {31,
154}, {88, 221}, {91, 222}, {65, 201}, {102, 238}, {68, 205}, {85, 220}, {57,
179}, {107, 225}, {110, 228}, {43, 165}, {69, 203}, {108, 227}, {86, 198}, {16,
129}, {71, 214}, {18, 131}, {23, 133}, {49, 163}, {48, 162}, {116, 230}, {17,
130}, {115, 224}, {120, 235}, {30, 138}, {55, 163}, {93, 201}, {112, 228}, {113,
229}, {117, 225}, {14, 155}, {31, 138}, {29, 136}, {60, 170}, {81, 199}, {19,
132}, {83, 196}, {44, 187}, {30, 137}, {39, 191}, {127, 231}, {54, 174}, {104,
240}, {127, 230}, {39, 189}, {124, 230}, {28, 135}, {78, 213}, {1, 156}, {58,
167}, {27, 134}, {21, 139}, {70, 216}, {45, 178}, {125, 226}, {64, 223}, {44,
140}, {3, 161}, {53, 151}, {49, 147}, {63, 156}, {117, 214}, {48, 148}, {49,
149}, {51, 150}, {62, 155}, {63, 152}, {98, 197}, {120, 223}, {99, 203}, {29,
180}, {57, 144}, {37, 143}, {32, 139}, {125, 214}, {120, 211}, {36, 136}, {52,
152}, {122, 214}, {33, 140}, {35, 142}, {108, 193}, {121, 212}, {34, 141}, {38,
137}, {126, 207}, {43, 152}, {53, 134}, {37, 144}, {123, 206}, {111, 216}, {5,
188}, {41, 144}, {42, 145}, {47, 146}, {32, 158}, {45, 147}, {44, 146}, {94,
224}, {95, 225}, {2, 194}, {105, 169}, {66, 131}, {67, 130}, {14, 204}, {88,
154}, {92, 158}, {85, 150}, {114, 182}, {90, 159}, {35, 229}, {4, 195}, {69,
141}, {87, 159}, {115, 187}, {121, 176}, {123, 177}, {77, 128}, {98, 175}, {100,
169}, {110, 163}, {111, 162}, {87, 153}, {101, 171}, {124, 178}, {38, 233},
{107, 187}, {12, 221}, {71, 150}, {1, 211}, {82, 129}, {3, 215}, {75, 159}, {74,
158}, {100, 176}, {72, 157}, {122, 172}, {9, 222}, {120, 175}, {40, 240}, {126,
166}, {95, 134}, {116, 173}, {26, 192}, {117, 174}, {70, 154}, {116, 168}, {119,
171}, {28, 193}, {68, 153}, {103, 186}, {109, 176}, {118, 171}, {125, 160}, {22,
200}, {73, 151}, {114, 172}, {72, 168}, {105, 137}, {56, 217}, {76, 173}, {6,
228}, {46, 205}, {90, 185}, {103, 132}, {123, 152}, {106, 143}, {116, 145}, {12,
234}, {58, 220}, {104, 142}, {11, 236}, {60, 219}, {102, 142}, {102, 143}, {125,
148}, {89, 179}, {54, 218}, {41, 196}, {78, 160}, {106, 133}, {56, 200}, {90,
170}, {112, 128}, {18, 227}, {82, 163}, {80, 161}, {84, 165}, {118, 135}, {88,
170}, {81, 162}, {110, 157}, {51, 199}, {78, 187}, {91, 173}, {100, 146}, {119,
129}, {83, 164}, {94, 169}, {17, 232}, {74, 179}, {51, 202}, {86, 175}, {92,
166}, {70, 189}, {124, 128}, {50, 207}, {59, 198}, {45, 210}, {91, 164}
}>;
(II) A more general form is to represent the graph as the orbit of {104, 105}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 13)(6, 19)(7, 20)(8, 26)(10, 31)(11, 35)(12, 39)(14, 43)(15,
47)(16, 50)(17, 54)(18, 57)(21, 64)(22, 68)(23, 34)(25, 77)(27, 79)(28, 83)(29,
85)(30, 87)(32, 92)(33, 94)(36, 58)(37, 99)(38, 90)(40, 104)(41, 108)(42,
112)(44, 115)(45, 119)(46, 122)(48, 125)(49, 127)(51, 132)(52, 62)(53, 93)(55,
138)(56, 142)(59, 146)(60, 109)(63, 153)(65, 73)(66, 89)(67, 128)(69, 106)(70,
164)(71, 166)(74, 167)(75, 105)(76, 170)(78, 107)(80, 101)(81, 96)(82, 124)(84,
160)(86, 169)(88, 173)(91, 154)(95, 135)(97, 192)(98, 195)(100, 198)(102,
200)(103, 199)(110, 116)(111, 161)(113, 205)(114, 206)(117, 207)(118, 134)(120,
181)(121, 147)(123, 172)(126, 214)(129, 178)(130, 218)(131, 179)(133, 141)(136,
220)(137, 159)(139, 223)(140, 224)(143, 203)(144, 227)(145, 228)(149, 231)(150,
180)(151, 201)(152, 155)(156, 211)(157, 168)(162, 226)(163, 230)(165, 204)(171,
210)(174, 232)(175, 183)(176, 219)(177, 208)(184, 216)(185, 233)(186, 235)(188,
194)(189, 234)(190, 212)(191, 221)(193, 196)(197, 239)(202, 217)(213, 225)(215,
222)(229, 236) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 156)(3, 136)(4, 96)(5, 211)(6, 181)(7, 235)(8, 119)(9, 220)(10, 144)(11,
77)(12, 142)(13, 81)(14, 213)(16, 63)(17, 29)(18, 89)(19, 120)(20, 186)(21,
199)(22, 129)(23, 41)(24, 61)(25, 35)(26, 45)(27, 135)(28, 69)(30, 60)(31,
227)(32, 202)(33, 168)(34, 108)(36, 215)(37, 91)(38, 90)(39, 56)(40, 191)(42,
233)(43, 225)(44, 149)(46, 122)(48, 114)(49, 146)(50, 153)(51, 139)(52, 174)(53,
171)(54, 85)(55, 176)(57, 66)(58, 222)(59, 127)(62, 232)(64, 103)(67, 229)(68,
178)(70, 203)(71, 177)(74, 212)(75, 173)(76, 159)(78, 204)(79, 95)(80, 201)(82,
113)(83, 106)(86, 116)(87, 109)(88, 105)(92, 217)(93, 210)(94, 157)(97, 121)(98,
162)(99, 154)(100, 163)(101, 151)(102, 234)(104, 221)(107, 165)(110, 169)(111,
197)(112, 185)(115, 231)(117, 152)(118, 134)(123, 214)(124, 205)(125, 206)(126,
172)(128, 236)(130, 180)(131, 179)(132, 223)(133, 196)(137, 170)(138, 219)(140,
194)(141, 193)(143, 164)(145, 175)(147, 192)(148, 182)(150, 218)(155, 207)(158,
209)(161, 239)(166, 208)(167, 190)(183, 228)(184, 216)(187, 237)(188, 224)(189,
200)(195, 226)(198, 230)(238, 240)
c: (1, 2, 16, 129, 189, 240, 104, 105, 169, 94, 72, 157, 110, 88, 221, 238, 200,
22, 63, 156)(3, 29, 106, 161, 180, 79, 80, 132, 64, 65, 103, 223, 201, 95, 130,
239, 83, 17, 136, 47)(4, 41, 186, 120, 149, 225, 67, 216, 164, 35, 36, 146, 7,
62, 133, 226, 166, 118, 210, 217)(5, 6, 60, 119, 39, 40, 53, 137, 183, 224, 168,
174, 163, 154, 12, 102, 203, 113, 152, 140)(8, 30, 181, 211, 194, 117, 82, 70,
234, 142, 99, 100, 52, 33, 188, 228, 170, 171, 191, 56)(9, 10, 89, 158, 26, 27,
172, 206, 148, 207, 199, 147, 212, 61, 37, 197, 233, 165, 187, 145)(11, 97, 138,
139, 153, 141, 214, 46, 28, 178, 202, 227, 176, 85, 86, 231, 112, 90, 101,
173)(13, 14, 114, 160, 48, 213, 81, 190, 131, 57, 58, 98, 204, 84, 78, 162, 222,
66, 179, 167)(15, 124, 177, 108, 109, 150, 198, 127, 128, 159, 73, 76, 236, 59,
230, 218, 87, 34, 71, 205)(18, 144, 220, 175, 237, 107, 42, 111, 91, 24, 74,
192, 21, 155, 182, 125, 126, 135, 45, 209)(19, 20, 23, 96, 92, 93, 134, 208,
195, 196, 232, 235, 49, 215, 25, 143, 184, 229, 43, 44)(31, 32, 68, 69, 122,
123, 193, 50, 51, 219, 121, 77, 75, 151, 38, 185, 115, 116, 54, 55)
C4[ 240, 87 ]
240
-1 2 156 211 5
-2 1 16 6 194
-3 17 215 7 161
-4 18 8 195 64
-5 1 188 50 19
-6 2 51 228 20
-7 3 19 52 21
-8 22 4 53 97
-9 111 222 20 54
-10 55 66 23 91
-11 56 24 236 54
-12 221 25 234 32
-13 57 26 21 98
-14 155 58 27 204
-15 69 59 28 127
-16 2 60 117 129
-17 232 35 3 130
-18 4 61 227 131
-19 132 145 5 7
-20 6 62 9 64
-21 13 27 7 139
-22 200 113 8 63
-23 133 60 10 65
-24 11 66 89 35
-25 12 67 61 29
-26 13 68 93 192
-27 134 14 69 21
-28 135 15 70 193
-29 25 136 180 62
-30 137 138 41 63
-31 154 34 89 138
-32 12 158 71 139
-33 72 62 140 86
-34 73 31 141 109
-35 24 17 229 142
-36 99 136 74 43
-37 143 144 58 75
-38 112 233 137 76
-39 77 189 92 191
-40 56 93 75 240
-41 144 30 196 65
-42 67 78 90 145
-43 165 79 36 152
-44 187 80 146 140
-45 210 178 81 147
-46 123 82 126 205
-47 146 49 83 106
-48 126 148 84 162
-49 47 147 149 163
-50 178 5 207 109
-51 199 202 6 150
-52 94 7 85 152
-53 134 104 8 151
-54 11 9 174 218
-55 97 163 10 87
-56 11 200 40 217
-57 144 13 179 61
-58 220 167 14 37
-59 198 15 115 97
-60 23 16 170 219
-61 77 57 25 18
-62 33 155 29 20
-63 22 156 30 152
-64 79 223 4 20
-65 23 80 201 41
-66 24 81 10 131
-67 25 82 42 130
-68 102 26 205 153
-69 15 27 203 141
-70 154 189 28 216
-71 214 150 32 76
-72 33 157 168 94
-73 34 101 151 108
-74 36 179 158 97
-75 37 159 40 86
-76 38 71 173 109
-77 39 61 128 85
-78 187 213 160 42
-79 106 118 64 43
-80 44 210 161 65
-81 66 45 199 162
-82 67 46 129 163
-83 47 95 196 164
-84 165 48 114 107
-85 77 220 150 52
-86 33 198 75 175
-87 55 159 108 153
-88 110 154 221 170
-89 24 179 96 31
-90 159 170 42 185
-91 222 173 10 164
-92 166 223 158 39
-93 201 26 40 118
-94 169 224 72 52
-95 134 103 225 83
-96 89 103 226 119
-97 55 59 8 74
-98 13 114 175 197
-99 36 203 105 227
-100 176 113 146 169
-101 111 115 171 73
-102 143 68 238 142
-103 132 95 96 186
-104 105 53 240 142
-105 99 169 104 137
-106 143 133 79 47
-107 187 112 225 84
-108 193 73 227 87
-109 176 34 50 76
-110 88 157 228 163
-111 101 216 162 9
-112 38 128 107 228
-113 22 100 122 229
-114 182 84 172 98
-115 187 101 59 224
-116 145 168 173 230
-117 16 214 225 174
-118 79 135 93 171
-119 121 171 96 129
-120 211 223 235 175
-121 176 212 127 119
-122 113 124 214 172
-123 177 46 206 152
-124 122 178 128 230
-125 148 214 160 226
-126 166 46 48 207
-127 121 231 15 230
-128 77 112 124 218
-129 189 16 82 119
-130 67 223 17 208
-131 66 167 212 18
-132 103 180 19 217
-133 23 188 182 106
-134 210 27 95 53
-135 199 213 28 118
-136 36 235 29 239
-137 38 105 30 208
-138 192 30 31 230
-139 181 218 21 32
-140 33 44 156 193
-141 34 69 182 194
-142 35 102 202 104
-143 102 37 106 216
-144 176 57 37 41
-145 116 19 162 42
-146 44 100 47 192
-147 45 190 49 219
-148 48 125 193 196
-149 201 49 237 194
-150 71 236 51 85
-151 231 73 53 197
-152 123 52 63 43
-153 155 68 211 87
-154 88 70 215 31
-155 14 62 172 153
-156 1 181 63 140
-157 110 188 72 174
-158 167 92 74 32
-159 177 90 75 87
-160 78 125 204 206
-161 3 80 226 184
-162 111 145 48 81
-163 55 110 49 82
-164 91 234 83 184
-165 237 84 185 43
-166 92 180 126 170
-167 58 158 192 131
-168 232 72 116 194
-169 100 94 105 183
-170 88 166 90 60
-171 221 101 118 119
-172 122 155 114 208
-173 91 191 116 76
-174 157 235 117 54
-175 233 86 98 120
-176 121 100 144 109
-177 123 202 159 218
-178 45 124 234 50
-179 89 57 190 74
-180 132 166 29 229
-181 156 139 183 186
-182 133 114 206 141
-183 169 181 195 185
-184 203 161 164 197
-185 165 90 236 183
-186 220 232 103 181
-187 44 78 115 107
-188 231 133 157 5
-189 70 39 129 240
-190 209 222 179 147
-191 210 39 238 173
-192 167 146 26 138
-193 148 28 140 108
-194 2 168 149 141
-195 4 183 206 239
-196 224 148 83 41
-197 220 151 184 98
-198 59 205 86 219
-199 135 81 235 51
-200 22 56 203 238
-201 93 149 239 65
-202 209 177 51 142
-203 99 200 69 184
-204 233 14 160 237
-205 198 46 68 236
-206 123 160 182 195
-207 232 213 126 50
-208 137 172 217 130
-209 190 212 202 217
-210 45 134 80 191
-211 1 224 120 153
-212 121 209 215 131
-213 78 222 135 207
-214 122 125 71 117
-215 154 3 212 225
-216 143 111 70 239
-217 132 209 56 208
-218 177 128 139 54
-219 198 147 60 227
-220 58 85 186 197
-221 88 12 171 238
-222 91 190 213 9
-223 92 64 130 120
-224 211 115 94 196
-225 215 95 117 107
-226 125 161 96 228
-227 99 18 108 219
-228 110 112 6 226
-229 35 233 113 180
-230 124 116 127 138
-231 188 127 237 151
-232 168 17 207 186
-233 38 204 229 175
-234 12 178 240 164
-235 199 136 174 120
-236 11 150 205 185
-237 165 231 149 204
-238 221 200 102 191
-239 201 136 216 195
-240 189 234 104 40
0