C4graphGraph forms for C4 [ 240, 89 ] = UG(ATD[240,147])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 89 ] = UG(ATD[240,147]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {6, 7}, {238, 239}, {232, 233}, {164, 165}, {154, 155}, {44, 45}, {90, 91}, {5, 7}, {221, 223}, {160, 162}, {40, 42}, {33, 35}, {1, 2}, {236, 239}, {177, 178}, {165, 166}, {145, 146}, {80, 83}, {66, 70}, {154, 158}, {1, 4}, {208, 213}, {3, 6}, {8, 14}, {232, 238}, {184, 190}, {179, 181}, {162, 164}, {64, 70}, {34, 36}, {9, 15}, {91, 93}, {2, 5}, {161, 166}, {144, 151}, {19, 20}, {139, 140}, {2, 10}, {231, 239}, {179, 187}, {65, 73}, {49, 57}, {6, 14}, {4, 12}, {3, 11}, {100, 109}, {130, 136}, {215, 221}, {147, 153}, {6, 13}, {150, 157}, {67, 72}, {64, 75}, {65, 77}, {230, 234}, {96, 108}, {97, 109}, {98, 110}, {131, 143}, {68, 73}, {1, 15}, {229, 235}, {213, 219}, {86, 88}, {3, 12}, {183, 184}, {14, 30}, {15, 31}, {134, 151}, {141, 156}, {135, 150}, {1, 19}, {205, 223}, {9, 27}, {8, 26}, {4, 23}, {8, 28}, {228, 240}, {33, 53}, {9, 29}, {10, 28}, {175, 185}, {11, 29}, {172, 187}, {205, 218}, {76, 84}, {167, 191}, {134, 158}, {74, 83}, {233, 240}, {205, 212}, {166, 191}, {128, 153}, {206, 213}, {13, 17}, {206, 210}, {5, 24}, {237, 240}, {13, 16}, {102, 123}, {7, 25}, {204, 210}, {15, 16}, {3, 34}, {74, 107}, {92, 126}, {93, 127}, {2, 33}, {148, 183}, {140, 175}, {92, 127}, {16, 52}, {27, 63}, {26, 62}, {25, 61}, {24, 60}, {19, 55}, {18, 54}, {17, 53}, {89, 125}, {12, 41}, {75, 110}, {134, 161}, {146, 181}, {130, 170}, {20, 61}, {22, 63}, {17, 59}, {218, 240}, {202, 224}, {198, 236}, {7, 44}, {66, 105}, {21, 62}, {4, 40}, {23, 59}, {22, 58}, {21, 57}, {20, 56}, {195, 238}, {14, 32}, {18, 60}, {137, 167}, {196, 235}, {197, 234}, {223, 239}, {220, 237}, {18, 32}, {211, 225}, {152, 170}, {26, 40}, {19, 32}, {155, 168}, {21, 33}, {22, 34}, {84, 96}, {219, 238}, {79, 121}, {154, 172}, {16, 39}, {214, 225}, {86, 97}, {67, 123}, {68, 124}, {31, 38}, {10, 48}, {149, 175}, {143, 181}, {11, 49}, {77, 119}, {30, 37}, {216, 227}, {31, 36}, {30, 35}, {208, 237}, {150, 171}, {12, 50}, {222, 224}, {217, 231}, {13, 51}, {25, 38}, {142, 177}, {56, 120}, {162, 226}, {58, 122}, {57, 121}, {52, 117}, {162, 227}, {158, 223}, {54, 119}, {41, 107}, {147, 209}, {49, 115}, {48, 114}, {45, 111}, {44, 110}, {53, 118}, {35, 103}, {132, 193}, {141, 200}, {42, 108}, {148, 210}, {50, 116}, {43, 109}, {5, 66}, {174, 233}, {145, 214}, {142, 201}, {24, 95}, {17, 86}, {11, 76}, {128, 200}, {160, 232}, {159, 215}, {135, 207}, {23, 94}, {145, 219}, {8, 67}, {36, 104}, {37, 105}, {9, 68}, {39, 106}, {28, 81}, {20, 90}, {29, 82}, {167, 232}, {183, 230}, {188, 237}, {39, 116}, {177, 229}, {38, 115}, {139, 222}, {47, 122}, {45, 120}, {153, 207}, {159, 201}, {37, 114}, {144, 199}, {46, 121}, {139, 220}, {136, 208}, {10, 80}, {176, 234}, {129, 219}, {131, 216}, {188, 231}, {41, 117}, {43, 119}, {42, 118}, {156, 193}, {182, 235}, {46, 112}, {186, 228}, {178, 236}, {47, 113}, {46, 113}, {188, 227}, {129, 222}, {32, 64}, {170, 202}, {189, 220}, {180, 214}, {184, 218}, {34, 65}, {138, 233}, {133, 225}, {165, 192}, {54, 80}, {169, 207}, {140, 234}, {172, 203}, {179, 212}, {141, 229}, {22, 127}, {169, 192}, {43, 66}, {187, 209}, {21, 126}, {47, 68}, {44, 71}, {36, 79}, {35, 78}, {190, 211}, {186, 215}, {163, 206}, {46, 67}, {40, 69}, {18, 125}, {39, 87}, {173, 221}, {55, 71}, {160, 209}, {171, 218}, {185, 203}, {151, 228}, {180, 199}, {161, 210}, {147, 230}, {51, 69}, {164, 211}, {190, 198}, {25, 96}, {152, 225}, {146, 235}, {52, 77}, {51, 74}, {31, 102}, {29, 100}, {27, 98}, {157, 231}, {26, 97}, {168, 211}, {155, 224}, {55, 76}, {30, 101}, {41, 85}, {169, 213}, {53, 72}, {173, 208}, {159, 226}, {189, 195}, {28, 99}, {95, 222}, {102, 227}, {101, 226}, {24, 144}, {45, 164}, {75, 194}, {42, 160}, {47, 165}, {78, 196}, {74, 193}, {60, 176}, {63, 179}, {62, 178}, {61, 177}, {77, 195}, {23, 135}, {87, 199}, {88, 200}, {89, 201}, {91, 202}, {116, 229}, {27, 136}, {117, 230}, {58, 174}, {59, 175}, {81, 197}, {112, 228}, {56, 173}, {83, 198}, {48, 166}, {75, 221}, {49, 167}, {85, 194}, {92, 203}, {89, 192}, {50, 168}, {51, 169}, {122, 224}, {55, 172}, {92, 192}, {112, 236}, {54, 171}, {95, 194}, {52, 170}, {94, 193}, {98, 195}, {103, 197}, {114, 209}, {104, 204}, {108, 200}, {109, 201}, {111, 202}, {113, 212}, {115, 214}, {99, 196}, {56, 144}, {106, 194}, {59, 145}, {63, 149}, {62, 148}, {107, 199}, {60, 146}, {61, 147}, {105, 198}, {115, 220}, {118, 217}, {116, 197}, {117, 196}, {125, 204}, {37, 150}, {126, 205}, {96, 212}, {121, 207}, {50, 136}, {118, 204}, {99, 216}, {112, 203}, {38, 154}, {100, 217}, {93, 226}, {87, 148}, {106, 174}, {111, 171}, {72, 142}, {73, 143}, {87, 159}, {81, 152}, {70, 140}, {71, 141}, {82, 153}, {84, 152}, {76, 129}, {69, 139}, {122, 180}, {81, 158}, {80, 128}, {113, 163}, {79, 156}, {100, 176}, {78, 155}, {108, 185}, {82, 132}, {90, 131}, {95, 133}, {85, 142}, {111, 178}, {104, 182}, {119, 168}, {57, 216}, {124, 157}, {104, 138}, {58, 217}, {94, 189}, {101, 134}, {82, 182}, {88, 188}, {89, 189}, {90, 190}, {91, 191}, {43, 206}, {101, 128}, {48, 215}, {88, 191}, {102, 129}, {103, 143}, {97, 138}, {105, 130}, {65, 173}, {86, 187}, {106, 135}, {110, 131}, {120, 149}, {84, 186}, {103, 137}, {114, 156}, {69, 181}, {73, 185}, {72, 184}, {71, 183}, {70, 182}, {120, 137}, {123, 137}, {64, 180}, {78, 186}, {85, 161}, {98, 151}, {99, 149}, {107, 157}, {124, 138}, {124, 133}, {126, 132}, {127, 133}, {83, 174}, {94, 163}, {93, 163}, {79, 176}, {123, 132}, {125, 130} }>;

(II) A more general form is to represent the graph as the orbit of {6, 7} under the group generated by the following permutations:

a: (2, 15)(3, 14)(4, 19)(5, 16)(7, 13)(8, 11)(9, 10)(12, 32)(17, 25)(18, 50)(20, 23)(21, 102)(22, 101)(24, 39)(26, 76)(27, 80)(28, 29)(30, 34)(31, 33)(35, 36)(37, 65)(38, 53)(40, 55)(41, 64)(42, 172)(43, 170)(44, 51)(45, 169)(46, 167)(47, 166)(48, 68)(49, 67)(52, 66)(54, 136)(56, 135)(57, 123)(58, 134)(59, 61)(60, 116)(62, 129)(63, 128)(69, 71)(70, 117)(72, 115)(73, 114)(74, 110)(75, 107)(77, 105)(78, 104)(79, 103)(81, 100)(82, 99)(83, 98)(84, 97)(85, 180)(86, 96)(87, 95)(88, 212)(89, 211)(90, 94)(91, 163)(92, 162)(106, 144)(108, 187)(109, 152)(111, 213)(112, 232)(113, 191)(118, 154)(119, 130)(120, 207)(121, 137)(122, 161)(124, 215)(125, 168)(126, 227)(127, 226)(131, 193)(132, 216)(133, 159)(138, 186)(139, 183)(140, 230)(141, 181)(142, 214)(143, 156)(145, 177)(146, 229)(147, 175)(148, 222)(149, 153)(150, 173)(151, 174)(155, 204)(157, 221)(158, 217)(160, 203)(164, 192)(171, 208)(176, 197)(178, 219)(179, 200)(182, 196)(184, 220)(185, 209)(188, 205)(189, 190)(194, 199)(195, 198)(201, 225)(202, 206)(210, 224)(218, 237)(223, 231)(228, 233)(236, 238)
b: (2, 4)(3, 7)(5, 12)(8, 17)(9, 20)(10, 23)(11, 25)(13, 14)(15, 19)(16, 32)(18, 39)(21, 42)(22, 45)(24, 50)(26, 53)(27, 56)(28, 59)(29, 61)(30, 51)(31, 55)(33, 40)(34, 44)(35, 69)(36, 71)(37, 74)(38, 76)(41, 66)(43, 85)(46, 88)(47, 91)(48, 94)(49, 96)(52, 64)(54, 106)(57, 108)(58, 111)(60, 116)(62, 118)(63, 120)(65, 110)(67, 86)(68, 90)(70, 117)(72, 97)(73, 131)(75, 77)(78, 139)(79, 141)(80, 135)(81, 145)(82, 147)(83, 150)(84, 115)(87, 125)(89, 159)(92, 162)(93, 165)(95, 168)(98, 173)(99, 175)(100, 177)(101, 169)(102, 172)(103, 181)(104, 183)(105, 107)(109, 142)(112, 188)(113, 191)(114, 193)(119, 194)(121, 200)(122, 202)(123, 187)(124, 190)(126, 160)(127, 164)(128, 207)(129, 154)(130, 199)(132, 209)(133, 211)(134, 213)(136, 144)(137, 179)(138, 184)(140, 196)(146, 197)(148, 204)(151, 208)(152, 214)(155, 222)(157, 198)(158, 219)(161, 206)(163, 166)(167, 212)(170, 180)(171, 174)(176, 229)(178, 217)(182, 230)(185, 216)(186, 220)(189, 215)(192, 226)(195, 221)(203, 227)(205, 232)(218, 233)(223, 238)(228, 237)(231, 236)(234, 235)
c: (1, 2, 10, 48, 166, 165, 47, 68, 9, 15)(3, 6, 14, 30, 101, 226, 93, 127, 22, 34)(4, 5, 28, 114, 161, 164, 113, 124, 27, 31)(7, 8, 37, 134, 162, 163, 133, 63, 36, 12)(11, 13, 32, 35, 128, 159, 91, 92, 58, 65)(16, 19, 33, 80, 215, 191, 192, 122, 73, 29)(17, 18, 78, 200, 201, 202, 203, 217, 77, 76)(20, 21, 83, 221, 167, 169, 180, 143, 82, 39)(23, 24, 99, 156, 85, 45, 46, 157, 98, 102)(25, 26, 105, 158, 160, 206, 225, 179, 104, 50)(38, 40, 66, 81, 209, 210, 211, 212, 138, 136)(41, 44, 67, 150, 151, 227, 94, 95, 149, 79)(42, 43, 152, 187, 204, 168, 96, 97, 130, 154)(49, 51, 64, 103, 153, 87, 90, 126, 174, 173)(52, 55, 53, 54, 186, 88, 89, 224, 185, 100)(56, 57, 74, 75, 137, 207, 199, 131, 132, 106)(59, 60, 196, 141, 142, 111, 112, 231, 195, 129)(61, 62, 198, 223, 232, 213, 214, 181, 182, 116)(69, 70, 197, 147, 148, 190, 205, 233, 208, 115)(71, 72, 171, 228, 188, 189, 222, 175, 176, 117)(84, 86, 125, 155, 108, 109, 170, 172, 118, 119)(107, 110, 123, 135, 144, 216, 193, 194, 120, 121)(139, 140, 234, 230, 183, 184, 218, 240, 237, 220)(145, 146, 235, 229, 177, 178, 236, 239, 238, 219)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 89 ]
240
-1 2 4 15 19
-2 33 1 5 10
-3 11 12 34 6
-4 1 12 23 40
-5 66 2 24 7
-6 13 3 14 7
-7 44 25 5 6
-8 67 14 26 28
-9 68 15 27 29
-10 2 80 48 28
-11 3 49 29 76
-12 3 4 50 41
-13 16 6 17 51
-14 6 8 30 32
-15 1 16 9 31
-16 13 15 39 52
-17 13 59 53 86
-18 125 60 32 54
-19 55 1 20 32
-20 56 90 61 19
-21 33 57 126 62
-22 34 58 127 63
-23 135 4 59 94
-24 144 5 60 95
-25 38 61 7 96
-26 40 62 8 97
-27 136 63 9 98
-28 99 81 8 10
-29 11 100 82 9
-30 35 101 14 37
-31 36 102 15 38
-32 14 18 19 64
-33 2 35 53 21
-34 22 3 36 65
-35 33 78 103 30
-36 34 79 104 31
-37 114 105 150 30
-38 154 25 115 31
-39 16 116 106 87
-40 69 4 26 42
-41 12 117 85 107
-42 160 40 118 108
-43 66 206 119 109
-44 110 45 71 7
-45 44 111 120 164
-46 121 67 112 113
-47 165 122 68 113
-48 166 114 215 10
-49 11 57 167 115
-50 12 168 136 116
-51 13 69 169 74
-52 77 16 170 117
-53 33 17 72 118
-54 80 171 18 119
-55 71 172 19 76
-56 144 173 20 120
-57 121 49 216 21
-58 22 122 217 174
-59 23 145 17 175
-60 176 24 146 18
-61 177 25 147 20
-62 178 26 148 21
-63 22 179 27 149
-64 70 180 75 32
-65 77 34 73 173
-66 70 5 105 43
-67 46 123 72 8
-68 47 124 73 9
-69 181 40 51 139
-70 66 182 140 64
-71 44 55 183 141
-72 67 184 53 142
-73 143 68 185 65
-74 83 193 51 107
-75 110 221 194 64
-76 11 55 84 129
-77 52 195 119 65
-78 155 35 196 186
-79 121 176 156 36
-80 83 128 10 54
-81 158 28 152 197
-82 132 182 29 153
-83 198 80 74 174
-84 96 152 76 186
-85 161 194 41 142
-86 88 187 17 97
-87 199 148 159 39
-88 188 200 191 86
-89 189 201 125 192
-90 91 190 20 131
-91 90 191 202 93
-92 126 192 203 127
-93 91 127 226 163
-94 23 189 193 163
-95 133 24 222 194
-96 25 212 84 108
-97 26 138 86 109
-98 110 27 151 195
-99 28 149 216 196
-100 176 29 217 109
-101 134 226 128 30
-102 123 227 129 31
-103 143 35 137 197
-104 36 138 182 204
-105 66 198 37 130
-106 135 39 194 174
-107 199 157 41 74
-108 200 96 42 185
-109 100 201 97 43
-110 44 75 98 131
-111 45 178 202 171
-112 46 203 236 228
-113 46 47 212 163
-114 209 156 37 48
-115 220 38 49 214
-116 39 50 229 197
-117 41 52 196 230
-118 204 217 42 53
-119 77 168 43 54
-120 45 56 137 149
-121 46 57 79 207
-122 47 58 180 224
-123 132 67 102 137
-124 133 68 157 138
-125 89 204 18 130
-126 132 92 205 21
-127 22 133 92 93
-128 101 200 80 153
-129 222 102 76 219
-130 125 136 170 105
-131 110 143 90 216
-132 123 82 126 193
-133 124 225 127 95
-134 101 158 161 151
-135 23 106 150 207
-136 27 50 130 208
-137 123 167 103 120
-138 233 124 104 97
-139 220 222 69 140
-140 234 70 139 175
-141 156 200 71 229
-142 177 201 72 85
-143 103 181 73 131
-144 56 199 24 151
-145 146 59 214 219
-146 145 235 60 181
-147 209 61 153 230
-148 210 62 183 87
-149 99 63 120 175
-150 135 157 37 171
-151 144 134 228 98
-152 81 170 225 84
-153 147 82 128 207
-154 155 158 38 172
-155 154 78 168 224
-156 79 114 193 141
-157 231 124 150 107
-158 154 134 223 81
-159 201 215 226 87
-160 209 232 162 42
-161 166 210 134 85
-162 160 226 227 164
-163 113 93 94 206
-164 165 45 211 162
-165 166 47 192 164
-166 165 48 191 161
-167 232 191 49 137
-168 155 211 50 119
-169 213 192 51 207
-170 202 52 130 152
-171 111 150 218 54
-172 55 154 187 203
-173 56 221 65 208
-174 233 58 83 106
-175 59 149 140 185
-176 100 79 234 60
-177 178 61 229 142
-178 111 177 236 62
-179 187 212 181 63
-180 122 199 214 64
-181 143 69 146 179
-182 70 235 82 104
-183 71 148 184 230
-184 190 72 183 218
-185 203 73 108 175
-186 78 215 84 228
-187 209 179 172 86
-188 88 231 237 227
-189 220 89 94 195
-190 198 90 211 184
-191 88 166 167 91
-192 165 89 92 169
-193 132 156 94 74
-194 95 106 85 75
-195 77 189 238 98
-196 99 78 235 117
-197 234 81 103 116
-198 190 236 83 105
-199 144 180 107 87
-200 88 128 108 141
-201 89 159 109 142
-202 111 91 224 170
-203 112 92 172 185
-204 210 125 104 118
-205 212 223 126 218
-206 210 213 163 43
-207 121 135 169 153
-208 136 213 237 173
-209 187 114 147 160
-210 148 204 161 206
-211 168 190 225 164
-212 113 179 205 96
-213 169 206 208 219
-214 145 180 115 225
-215 221 48 159 186
-216 99 57 227 131
-217 231 100 58 118
-218 171 205 184 240
-219 145 213 238 129
-220 189 115 237 139
-221 223 215 173 75
-222 224 95 139 129
-223 221 158 205 239
-224 122 155 222 202
-225 133 211 214 152
-226 101 93 159 162
-227 188 102 216 162
-228 112 151 240 186
-229 177 235 116 141
-230 234 147 117 183
-231 188 157 217 239
-232 167 233 160 238
-233 232 138 174 240
-234 176 140 197 230
-235 146 182 196 229
-236 198 112 178 239
-237 220 188 240 208
-238 232 195 239 219
-239 231 223 236 238
-240 233 237 228 218
0

**************