C4graphGraph forms for C4 [ 240, 90 ] = UG(ATD[240,150])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 90 ] = UG(ATD[240,150]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {110, 111}, {19, 23}, {130, 135}, {200, 205}, {10, 13}, {16, 24}, {166, 174}, {32, 41}, {1, 11}, {178, 184}, {192, 204}, {144, 158}, {228, 234}, {148, 154}, {46, 62}, {196, 212}, {136, 152}, {69, 85}, {161, 176}, {36, 54}, {171, 185}, {76, 94}, {75, 89}, {72, 90}, {39, 53}, {79, 93}, {68, 87}, {1, 21}, {97, 116}, {207, 217}, {102, 126}, {40, 50}, {107, 113}, {37, 62}, {100, 127}, {203, 215}, {3, 30}, {1, 31}, {24, 56}, {77, 108}, {149, 180}, {146, 179}, {11, 41}, {131, 160}, {193, 226}, {152, 188}, {203, 239}, {202, 238}, {153, 189}, {140, 169}, {197, 224}, {86, 112}, {21, 61}, {8, 33}, {81, 120}, {4, 46}, {66, 104}, {64, 106}, {78, 101}, {134, 173}, {133, 174}, {26, 54}, {145, 189}, {137, 165}, {95, 114}, {130, 175}, {13, 34}, {14, 33}, {83, 124}, {84, 123}, {12, 60}, {154, 170}, {147, 163}, {93, 109}, {1, 51}, {155, 169}, {129, 179}, {28, 46}, {3, 49}, {14, 61}, {217, 234}, {132, 183}, {142, 186}, {87, 98}, {92, 105}, {9, 63}, {221, 235}, {22, 33}, {150, 161}, {219, 227}, {13, 52}, {21, 44}, {88, 97}, {6, 60}, {213, 238}, {129, 189}, {135, 187}, {220, 225}, {30, 32}, {82, 108}, {83, 109}, {20, 43}, {138, 202}, {10, 72}, {157, 223}, {132, 199}, {143, 204}, {140, 200}, {162, 230}, {157, 217}, {26, 95}, {153, 220}, {6, 64}, {36, 108}, {160, 232}, {50, 122}, {47, 103}, {163, 234}, {26, 80}, {174, 228}, {155, 209}, {2, 73}, {52, 127}, {11, 71}, {49, 125}, {34, 111}, {53, 120}, {20, 90}, {162, 236}, {42, 100}, {31, 81}, {11, 91}, {145, 193}, {51, 99}, {23, 70}, {147, 194}, {36, 118}, {178, 224}, {159, 205}, {56, 106}, {2, 86}, {129, 213}, {128, 212}, {16, 68}, {6, 94}, {179, 235}, {56, 96}, {48, 104}, {47, 118}, {189, 228}, {139, 210}, {134, 223}, {45, 119}, {18, 73}, {188, 231}, {181, 238}, {22, 77}, {51, 111}, {185, 229}, {12, 81}, {178, 239}, {157, 192}, {141, 208}, {61, 96}, {38, 123}, {59, 101}, {6, 89}, {155, 196}, {128, 223}, {20, 116}, {137, 233}, {17, 112}, {184, 217}, {177, 208}, {48, 81}, {43, 74}, {27, 121}, {173, 207}, {28, 126}, {164, 199}, {191, 220}, {165, 198}, {4, 96}, {182, 210}, {63, 91}, {3, 102}, {177, 212}, {170, 207}, {44, 73}, {31, 121}, {188, 218}, {51, 84}, {135, 224}, {32, 72}, {142, 230}, {133, 237}, {128, 233}, {29, 119}, {167, 205}, {40, 66}, {186, 209}, {2, 110}, {171, 199}, {58, 86}, {25, 116}, {41, 70}, {21, 101}, {3, 114}, {41, 88}, {8, 122}, {35, 80}, {159, 236}, {16, 100}, {31, 107}, {26, 110}, {55, 66}, {7, 113}, {58, 76}, {12, 122}, {43, 92}, {180, 195}, {146, 229}, {165, 221}, {175, 215}, {149, 236}, {186, 195}, {150, 239}, {184, 194}, {40, 83}, {167, 219}, {158, 227}, {29, 99}, {59, 69}, {57, 71}, {4, 123}, {168, 215}, {22, 150}, {83, 211}, {18, 144}, {98, 225}, {12, 136}, {70, 194}, {55, 179}, {52, 176}, {42, 172}, {75, 205}, {59, 188}, {77, 202}, {67, 196}, {60, 187}, {17, 153}, {110, 230}, {67, 207}, {82, 222}, {15, 130}, {63, 178}, {34, 175}, {87, 218}, {72, 198}, {109, 227}, {35, 172}, {62, 177}, {49, 161}, {117, 231}, {55, 164}, {93, 206}, {112, 227}, {90, 206}, {28, 137}, {70, 211}, {78, 219}, {79, 218}, {113, 228}, {9, 159}, {124, 234}, {13, 154}, {48, 168}, {89, 193}, {5, 156}, {69, 220}, {45, 180}, {44, 181}, {23, 142}, {29, 135}, {45, 183}, {37, 191}, {118, 236}, {16, 139}, {87, 202}, {17, 143}, {64, 222}, {57, 166}, {53, 149}, {57, 153}, {79, 239}, {119, 215}, {20, 182}, {98, 192}, {99, 193}, {107, 201}, {14, 173}, {48, 148}, {121, 221}, {7, 162}, {52, 145}, {15, 169}, {68, 226}, {36, 131}, {97, 201}, {42, 131}, {19, 185}, {65, 235}, {32, 138}, {28, 182}, {79, 229}, {38, 141}, {60, 151}, {7, 171}, {10, 166}, {50, 156}, {126, 208}, {120, 214}, {24, 183}, {95, 240}, {61, 141}, {37, 148}, {80, 225}, {104, 218}, {23, 164}, {84, 231}, {85, 230}, {94, 237}, {2, 182}, {97, 213}, {124, 201}, {115, 197}, {47, 152}, {100, 211}, {8, 176}, {27, 163}, {17, 168}, {39, 158}, {38, 159}, {56, 130}, {108, 214}, {5, 190}, {123, 192}, {75, 240}, {105, 210}, {85, 233}, {127, 195}, {115, 206}, {18, 172}, {59, 133}, {58, 132}, {50, 140}, {94, 224}, {114, 204}, {44, 147}, {119, 200}, {40, 232}, {25, 216}, {18, 209}, {125, 190}, {19, 208}, {71, 131}, {101, 161}, {118, 176}, {84, 147}, {19, 219}, {102, 174}, {103, 175}, {9, 195}, {67, 137}, {115, 185}, {5, 206}, {65, 138}, {112, 187}, {39, 235}, {91, 151}, {92, 144}, {8, 197}, {95, 146}, {103, 170}, {24, 214}, {27, 203}, {15, 222}, {113, 160}, {58, 232}, {76, 158}, {117, 167}, {62, 237}, {9, 221}, {66, 150}, {96, 180}, {106, 190}, {80, 133}, {7, 209}, {126, 168}, {49, 231}, {90, 140}, {15, 216}, {30, 201}, {88, 143}, {82, 139}, {64, 154}, {120, 163}, {45, 240}, {74, 151}, {65, 156}, {91, 134}, {102, 187}, {27, 197}, {122, 164}, {114, 172}, {25, 198}, {75, 148}, {74, 149}, {54, 233}, {109, 141}, {73, 170}, {78, 173}, {99, 128}, {54, 211}, {116, 145}, {125, 155}, {65, 166}, {127, 152}, {88, 191}, {10, 226}, {105, 129}, {117, 157}, {46, 199}, {98, 136}, {35, 200}, {85, 190}, {4, 232}, {71, 171}, {69, 169}, {89, 181}, {33, 204}, {63, 210}, {92, 177}, {103, 138}, {107, 134}, {37, 203}, {42, 196}, {14, 225}, {77, 162}, {55, 216}, {117, 132}, {74, 184}, {125, 143}, {124, 142}, {121, 139}, {29, 238}, {76, 191}, {53, 198}, {39, 212}, {30, 237}, {86, 165}, {22, 226}, {5, 240}, {82, 167}, {105, 156}, {67, 181}, {38, 222}, {106, 146}, {78, 183}, {47, 213}, {35, 216}, {57, 194}, {115, 136}, {25, 229}, {34, 223}, {43, 214}, {93, 160}, {68, 186}, {104, 151}, {111, 144} }>;

(II) A more general form is to represent the graph as the orbit of {110, 111} under the group generated by the following permutations:

a: (2, 4)(3, 6)(7, 9)(8, 10)(11, 31)(12, 32)(13, 33)(14, 34)(15, 35)(16, 36)(17, 37)(18, 38)(19, 39)(20, 40)(21, 51)(22, 52)(23, 53)(24, 54)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(41, 81)(42, 82)(43, 83)(44, 84)(45, 85)(46, 86)(47, 87)(48, 88)(49, 89)(50, 90)(61, 111)(62, 112)(63, 113)(64, 114)(65, 115)(66, 116)(67, 117)(68, 118)(69, 119)(70, 120)(71, 121)(72, 122)(73, 123)(74, 124)(75, 125)(76, 126)(77, 127)(78, 128)(79, 129)(80, 130)(91, 107)(92, 109)(93, 105)(94, 102)(95, 106)(96, 110)(97, 104)(98, 103)(99, 101)(100, 108)(131, 139)(132, 137)(133, 135)(136, 138)(141, 144)(142, 149)(143, 148)(145, 150)(151, 201)(152, 202)(153, 203)(154, 204)(155, 205)(156, 206)(157, 207)(158, 208)(159, 209)(160, 210)(161, 193)(162, 195)(163, 194)(164, 198)(165, 199)(166, 197)(167, 196)(168, 191)(169, 200)(170, 192)(171, 221)(172, 222)(173, 223)(174, 224)(175, 225)(176, 226)(177, 227)(178, 228)(179, 229)(180, 230)(181, 231)(182, 232)(183, 233)(184, 234)(185, 235)(186, 236)(187, 237)(188, 238)(189, 239)(190, 240)(211, 214)(212, 219)(213, 218)(215, 220)
b: (2, 238)(3, 159)(4, 188)(5, 216)(6, 209)(7, 60)(8, 19)(9, 30)(10, 39)(11, 31)(12, 171)(13, 212)(14, 78)(15, 190)(16, 191)(17, 108)(18, 89)(20, 129)(22, 227)(23, 197)(24, 220)(25, 156)(26, 119)(27, 70)(28, 47)(29, 110)(32, 221)(33, 219)(34, 128)(35, 240)(36, 168)(37, 100)(38, 49)(40, 79)(41, 121)(42, 148)(43, 189)(45, 80)(46, 152)(48, 131)(50, 229)(52, 177)(53, 166)(54, 215)(55, 206)(56, 69)(57, 120)(58, 87)(59, 96)(61, 101)(62, 127)(63, 201)(64, 155)(65, 198)(66, 93)(67, 170)(68, 76)(71, 81)(72, 235)(73, 181)(74, 228)(75, 172)(77, 112)(82, 143)(83, 239)(85, 130)(86, 202)(88, 139)(90, 179)(91, 107)(92, 145)(94, 186)(95, 200)(97, 210)(98, 132)(99, 111)(102, 236)(103, 137)(104, 160)(105, 116)(106, 169)(109, 150)(113, 151)(114, 205)(115, 164)(117, 192)(118, 126)(122, 185)(123, 231)(124, 178)(125, 222)(133, 180)(135, 230)(136, 199)(138, 165)(140, 146)(141, 161)(142, 224)(144, 193)(149, 174)(153, 214)(154, 196)(158, 226)(162, 187)(163, 194)(167, 204)(175, 233)(176, 208)(182, 213)(183, 225)(184, 234)(195, 237)(203, 211)(218, 232)
c: (1, 3, 4, 8)(2, 5, 9, 10)(6, 7)(11, 102, 232, 197)(12, 107, 237, 199)(13, 110, 240, 195)(14, 101, 231, 192)(15, 108, 238, 196)(16, 103, 233, 200)(17, 109, 239, 194)(18, 106, 236, 193)(19, 104, 234, 191)(20, 105, 235, 198)(21, 49, 123, 33)(22, 44, 125, 38)(23, 48, 124, 37)(24, 47, 128, 35)(25, 43, 129, 39)(26, 45, 127, 34)(27, 41, 126, 40)(28, 50, 121, 32)(29, 42, 130, 36)(30, 46, 122, 31)(51, 114, 96, 176)(52, 111, 95, 180)(53, 116, 92, 179)(54, 119, 100, 175)(55, 120, 97, 177)(56, 118, 99, 172)(57, 112, 93, 178)(58, 115, 91, 174)(59, 117, 98, 173)(60, 113, 94, 171)(61, 161, 84, 204)(62, 164, 81, 201)(63, 166, 86, 206)(64, 162, 89, 209)(65, 165, 90, 210)(66, 163, 88, 208)(67, 169, 82, 202)(68, 170, 85, 205)(69, 167, 87, 207)(70, 168, 83, 203)(71, 187, 160, 224)(72, 182, 156, 221)(73, 190, 159, 226)(74, 189, 158, 229)(75, 186, 154, 230)(76, 185, 151, 228)(77, 181, 155, 222)(78, 188, 157, 225)(79, 184, 153, 227)(80, 183, 152, 223)(131, 135)(132, 136, 134, 133)(137, 140, 139, 138)(141, 150, 147, 143)(142, 148)(144, 146, 149, 145)(211, 215)(212, 216, 214, 213)(217, 220, 219, 218)
d: (1, 2)(4, 7)(5, 8)(6, 10)(11, 86)(12, 90)(13, 89)(14, 85)(15, 87)(16, 82)(17, 88)(18, 84)(19, 83)(20, 81)(21, 110)(22, 106)(23, 109)(24, 108)(25, 104)(26, 101)(27, 105)(28, 107)(29, 103)(30, 102)(31, 182)(32, 187)(33, 190)(34, 181)(35, 188)(36, 183)(37, 189)(38, 186)(39, 184)(40, 185)(41, 112)(42, 117)(43, 120)(44, 111)(45, 118)(46, 113)(47, 119)(48, 116)(49, 114)(50, 115)(51, 73)(52, 75)(53, 74)(54, 78)(55, 79)(56, 77)(57, 76)(58, 71)(59, 80)(60, 72)(61, 230)(62, 228)(63, 221)(64, 226)(65, 224)(66, 229)(67, 223)(68, 222)(69, 225)(70, 227)(91, 165)(92, 163)(93, 164)(94, 166)(95, 161)(96, 162)(97, 168)(98, 169)(99, 170)(100, 167)(121, 210)(122, 206)(123, 209)(124, 208)(125, 204)(126, 201)(127, 205)(128, 207)(129, 203)(130, 202)(131, 132)(134, 137)(135, 138)(136, 140)(141, 142)(144, 147)(145, 148)(146, 150)(151, 198)(152, 200)(153, 191)(154, 193)(155, 192)(156, 197)(157, 196)(158, 194)(159, 195)(160, 199)(171, 232)(172, 231)(173, 233)(174, 237)(175, 238)(176, 240)(177, 234)(178, 235)(179, 239)(180, 236)(211, 219)(212, 217)(213, 215)(216, 218)
e: (2, 30)(3, 182)(4, 60)(6, 232)(7, 238)(8, 24)(9, 188)(10, 54)(11, 51)(12, 96)(13, 211)(14, 120)(15, 55)(16, 176)(17, 177)(18, 97)(19, 215)(20, 114)(21, 31)(22, 108)(23, 175)(25, 35)(26, 72)(27, 78)(28, 102)(29, 171)(32, 110)(33, 214)(34, 70)(36, 226)(37, 227)(38, 104)(39, 220)(40, 64)(41, 111)(42, 145)(43, 204)(44, 107)(45, 115)(46, 187)(47, 186)(48, 141)(49, 210)(50, 106)(52, 100)(53, 225)(56, 122)(57, 128)(58, 94)(59, 221)(61, 81)(62, 112)(63, 231)(65, 85)(66, 222)(67, 228)(68, 118)(69, 235)(71, 99)(73, 201)(74, 192)(75, 93)(79, 205)(80, 198)(82, 150)(83, 154)(84, 91)(86, 237)(87, 236)(88, 144)(89, 160)(90, 95)(92, 143)(98, 149)(101, 121)(103, 142)(105, 125)(109, 148)(113, 181)(116, 172)(117, 178)(119, 185)(123, 151)(124, 170)(129, 155)(130, 164)(131, 193)(132, 224)(133, 165)(134, 147)(135, 199)(136, 180)(137, 174)(138, 230)(139, 161)(140, 146)(152, 195)(153, 212)(156, 190)(157, 184)(158, 191)(159, 218)(162, 202)(163, 173)(166, 233)(167, 239)(168, 208)(169, 179)(183, 197)(189, 196)(194, 223)(200, 229)(203, 219)(206, 240)(207, 234)(209, 213)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 90 ]
240
-1 11 51 31 21
-2 110 182 73 86
-3 102 114 49 30
-4 232 46 123 96
-5 156 190 206 240
-6 89 60 94 64
-7 209 113 171 162
-8 33 176 122 197
-9 221 159 63 195
-10 166 13 72 226
-11 1 91 71 41
-12 122 81 136 60
-13 154 34 52 10
-14 33 225 61 173
-15 222 169 216 130
-16 100 24 68 139
-17 143 112 168 153
-18 209 144 73 172
-19 23 185 208 219
-20 90 116 182 43
-21 44 1 101 61
-22 33 77 226 150
-23 70 19 142 164
-24 56 16 214 183
-25 198 116 216 229
-26 110 80 95 54
-27 121 203 163 197
-28 46 126 137 182
-29 99 135 238 119
-30 3 201 237 32
-31 121 1 81 107
-32 72 138 30 41
-33 22 14 204 8
-34 111 13 223 175
-35 200 80 172 216
-36 118 108 54 131
-37 191 148 203 62
-38 123 222 159 141
-39 212 158 235 53
-40 66 232 50 83
-41 11 88 70 32
-42 100 172 196 131
-43 92 214 74 20
-44 147 181 73 21
-45 180 183 119 240
-46 199 4 28 62
-47 103 213 118 152
-48 168 81 104 148
-49 231 3 125 161
-50 122 156 40 140
-51 99 1 111 84
-52 176 13 145 127
-53 198 39 149 120
-54 211 233 36 26
-55 66 179 216 164
-56 24 106 96 130
-57 166 71 194 153
-58 132 232 86 76
-59 133 188 101 69
-60 187 12 6 151
-61 14 96 141 21
-62 177 46 37 237
-63 210 178 91 9
-64 154 222 6 106
-65 166 156 235 138
-66 55 104 40 150
-67 137 181 196 207
-68 16 226 87 186
-69 220 59 169 85
-70 23 211 194 41
-71 11 57 171 131
-72 198 90 10 32
-73 44 2 170 18
-74 149 151 184 43
-75 89 148 205 240
-76 58 158 191 94
-77 22 202 162 108
-78 101 183 173 219
-79 93 239 218 229
-80 133 35 26 225
-81 12 48 31 120
-82 167 222 139 108
-83 211 124 40 109
-84 231 123 147 51
-85 233 69 190 230
-86 165 2 112 58
-87 68 202 218 98
-88 143 191 41 97
-89 181 6 193 75
-90 72 140 206 20
-91 11 134 63 151
-92 144 177 105 43
-93 79 160 206 109
-94 224 6 237 76
-95 146 26 114 240
-96 56 4 180 61
-97 88 201 213 116
-98 136 192 225 87
-99 193 29 51 128
-100 211 16 127 42
-101 78 59 161 21
-102 187 3 126 174
-103 47 170 138 175
-104 66 48 151 218
-105 210 156 92 129
-106 56 146 190 64
-107 134 113 201 31
-108 77 36 82 214
-109 93 83 227 141
-110 111 2 26 230
-111 110 34 144 51
-112 187 17 227 86
-113 160 7 107 228
-114 3 204 95 172
-115 136 206 185 197
-116 145 25 20 97
-117 132 231 167 157
-118 176 36 47 236
-119 45 200 215 29
-120 81 214 53 163
-121 221 27 139 31
-122 12 50 8 164
-123 4 38 192 84
-124 201 234 83 142
-125 143 155 190 49
-126 102 168 28 208
-127 100 52 195 152
-128 99 233 212 223
-129 189 179 213 105
-130 56 135 15 175
-131 36 71 160 42
-132 199 58 117 183
-133 80 59 237 174
-134 91 223 107 173
-135 187 224 29 130
-136 12 115 152 98
-137 165 67 233 28
-138 103 202 32 65
-139 121 210 16 82
-140 90 200 169 50
-141 38 61 109 208
-142 23 124 186 230
-143 88 125 17 204
-144 111 92 158 18
-145 189 116 193 52
-146 179 95 106 229
-147 44 84 194 163
-148 154 37 48 75
-149 180 236 74 53
-150 22 66 161 239
-151 91 60 104 74
-152 188 47 136 127
-153 220 57 189 17
-154 13 148 170 64
-155 209 125 169 196
-156 5 50 105 65
-157 223 192 117 217
-158 144 39 227 76
-159 38 236 205 9
-160 232 113 93 131
-161 176 101 49 150
-162 77 236 7 230
-163 234 147 27 120
-164 55 23 122 199
-165 198 221 137 86
-166 57 174 10 65
-167 82 117 205 219
-168 48 126 17 215
-169 155 69 15 140
-170 154 103 73 207
-171 199 71 7 185
-172 35 114 18 42
-173 78 134 14 207
-174 133 166 102 228
-175 34 103 215 130
-176 161 8 52 118
-177 212 92 62 208
-178 224 63 184 239
-179 55 146 235 129
-180 45 149 96 195
-181 44 67 89 238
-182 210 2 28 20
-183 132 45 78 24
-184 178 194 74 217
-185 115 171 19 229
-186 209 68 195 142
-187 112 102 135 60
-188 231 59 152 218
-189 145 129 228 153
-190 125 5 106 85
-191 88 220 37 76
-192 123 157 204 98
-193 99 89 145 226
-194 57 70 147 184
-195 180 127 9 186
-196 67 155 212 42
-197 224 27 115 8
-198 165 25 72 53
-199 132 46 171 164
-200 35 205 140 119
-201 124 30 107 97
-202 77 138 238 87
-203 37 27 215 239
-204 33 143 114 192
-205 167 200 159 75
-206 90 5 93 115
-207 67 170 173 217
-208 177 126 19 141
-209 155 7 18 186
-210 105 182 139 63
-211 100 70 83 54
-212 177 39 128 196
-213 47 238 129 97
-214 24 108 43 120
-215 168 203 119 175
-216 55 35 25 15
-217 157 234 184 207
-218 188 79 104 87
-219 78 167 227 19
-220 69 191 225 153
-221 121 165 235 9
-222 15 38 82 64
-223 34 134 157 128
-224 178 135 94 197
-225 220 14 80 98
-226 22 68 193 10
-227 112 158 109 219
-228 189 113 234 174
-229 79 25 146 185
-230 110 85 162 142
-231 188 49 84 117
-232 58 4 160 40
-233 137 128 85 54
-234 124 217 228 163
-235 221 179 39 65
-236 159 149 118 162
-237 133 94 62 30
-238 202 213 181 29
-239 79 178 203 150
-240 45 5 95 75
0

**************