C4graphGraph forms for C4 [ 240, 91 ] = UG(ATD[240,152])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 91 ] = UG(ATD[240,152]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {220, 221}, {80, 82}, {67, 71}, {48, 53}, {83, 91}, {199, 207}, {176, 184}, {19, 26}, {1, 11}, {64, 76}, {209, 221}, {81, 93}, {116, 121}, {33, 47}, {177, 191}, {35, 45}, {132, 148}, {129, 144}, {74, 88}, {76, 94}, {169, 186}, {199, 212}, {1, 21}, {197, 209}, {33, 52}, {174, 187}, {45, 59}, {128, 150}, {6, 17}, {168, 191}, {66, 85}, {140, 149}, {129, 155}, {13, 22}, {67, 95}, {7, 26}, {133, 152}, {108, 113}, {1, 31}, {198, 216}, {105, 119}, {39, 56}, {167, 184}, {69, 90}, {25, 57}, {202, 234}, {146, 178}, {130, 162}, {85, 117}, {11, 41}, {206, 236}, {196, 230}, {194, 224}, {156, 190}, {154, 184}, {135, 165}, {133, 167}, {73, 107}, {75, 105}, {132, 160}, {89, 126}, {21, 61}, {206, 230}, {197, 237}, {150, 190}, {135, 175}, {2, 43}, {194, 235}, {83, 122}, {95, 117}, {152, 179}, {27, 55}, {79, 98}, {156, 177}, {28, 50}, {10, 37}, {20, 59}, {93, 114}, {76, 124}, {138, 186}, {29, 44}, {211, 226}, {149, 164}, {70, 119}, {1, 51}, {216, 234}, {141, 191}, {141, 185}, {29, 40}, {146, 167}, {6, 49}, {15, 56}, {87, 111}, {26, 35}, {73, 112}, {87, 110}, {156, 166}, {3, 56}, {159, 164}, {138, 177}, {79, 116}, {3, 62}, {142, 179}, {139, 182}, {84, 105}, {65, 127}, {211, 237}, {67, 125}, {16, 47}, {159, 223}, {166, 230}, {174, 239}, {17, 83}, {59, 121}, {29, 95}, {38, 101}, {21, 81}, {51, 119}, {31, 91}, {34, 103}, {138, 207}, {50, 119}, {46, 107}, {36, 97}, {57, 127}, {42, 98}, {166, 238}, {132, 204}, {30, 87}, {146, 219}, {144, 217}, {128, 201}, {9, 66}, {139, 192}, {61, 118}, {14, 69}, {11, 71}, {57, 117}, {41, 101}, {6, 75}, {162, 239}, {151, 218}, {137, 196}, {48, 125}, {34, 111}, {15, 95}, {40, 120}, {20, 68}, {27, 73}, {181, 231}, {40, 123}, {156, 207}, {134, 213}, {63, 108}, {60, 104}, {181, 225}, {146, 197}, {186, 237}, {62, 102}, {190, 230}, {157, 197}, {128, 216}, {4, 93}, {154, 195}, {138, 211}, {61, 100}, {45, 116}, {27, 66}, {20, 77}, {9, 80}, {15, 85}, {31, 69}, {29, 71}, {55, 108}, {147, 207}, {144, 205}, {58, 100}, {151, 201}, {128, 223}, {178, 237}, {142, 238}, {9, 104}, {175, 206}, {169, 200}, {33, 67}, {170, 201}, {11, 111}, {53, 80}, {134, 227}, {59, 94}, {8, 110}, {190, 216}, {183, 209}, {182, 208}, {60, 90}, {31, 121}, {51, 84}, {35, 75}, {136, 224}, {10, 99}, {23, 126}, {18, 123}, {134, 236}, {174, 196}, {142, 228}, {12, 103}, {43, 64}, {38, 77}, {13, 97}, {48, 92}, {21, 121}, {178, 223}, {182, 219}, {137, 231}, {143, 225}, {45, 66}, {5, 117}, {41, 88}, {161, 211}, {172, 222}, {26, 105}, {161, 210}, {7, 115}, {173, 217}, {51, 71}, {23, 98}, {158, 235}, {35, 85}, {159, 233}, {169, 222}, {175, 215}, {13, 116}, {5, 126}, {178, 201}, {160, 219}, {157, 225}, {16, 109}, {150, 235}, {37, 88}, {24, 103}, {166, 217}, {43, 84}, {72, 200}, {46, 175}, {74, 203}, {7, 133}, {55, 181}, {82, 208}, {30, 154}, {70, 194}, {82, 214}, {18, 151}, {49, 180}, {76, 202}, {25, 158}, {65, 198}, {46, 169}, {34, 165}, {68, 204}, {36, 173}, {42, 163}, {73, 192}, {83, 218}, {9, 131}, {10, 129}, {30, 149}, {107, 224}, {108, 231}, {58, 183}, {15, 129}, {96, 238}, {37, 170}, {50, 189}, {109, 226}, {3, 147}, {24, 136}, {112, 224}, {34, 179}, {120, 233}, {42, 187}, {77, 220}, {79, 222}, {86, 199}, {82, 193}, {5, 145}, {64, 212}, {113, 228}, {125, 232}, {123, 238}, {14, 153}, {24, 143}, {16, 135}, {90, 205}, {92, 203}, {12, 148}, {68, 220}, {27, 131}, {92, 198}, {18, 142}, {74, 215}, {109, 240}, {5, 154}, {19, 140}, {112, 239}, {25, 185}, {125, 221}, {65, 225}, {38, 134}, {63, 158}, {77, 236}, {109, 204}, {6, 165}, {56, 155}, {106, 206}, {22, 179}, {61, 155}, {4, 163}, {79, 232}, {100, 195}, {8, 160}, {57, 145}, {41, 131}, {124, 214}, {63, 148}, {65, 234}, {7, 171}, {32, 140}, {23, 187}, {78, 226}, {30, 176}, {44, 130}, {106, 196}, {54, 153}, {104, 199}, {96, 209}, {122, 203}, {106, 219}, {39, 148}, {102, 213}, {4, 176}, {68, 240}, {36, 144}, {22, 162}, {94, 234}, {62, 139}, {118, 195}, {99, 214}, {8, 191}, {19, 164}, {18, 170}, {60, 132}, {19, 171}, {32, 153}, {54, 143}, {96, 217}, {114, 200}, {36, 159}, {50, 137}, {94, 229}, {17, 173}, {124, 193}, {126, 195}, {2, 188}, {54, 136}, {8, 182}, {97, 223}, {23, 168}, {28, 222}, {46, 236}, {114, 176}, {14, 205}, {118, 181}, {44, 239}, {17, 210}, {97, 162}, {32, 228}, {101, 161}, {4, 193}, {86, 147}, {54, 240}, {127, 185}, {10, 205}, {16, 215}, {78, 137}, {2, 203}, {44, 229}, {33, 232}, {99, 170}, {72, 130}, {81, 155}, {91, 145}, {112, 187}, {124, 183}, {75, 135}, {91, 151}, {40, 229}, {47, 226}, {106, 167}, {70, 136}, {98, 172}, {101, 171}, {32, 240}, {58, 235}, {107, 186}, {86, 133}, {28, 200}, {120, 172}, {69, 145}, {104, 189}, {2, 212}, {52, 227}, {123, 172}, {122, 173}, {99, 180}, {3, 218}, {122, 163}, {14, 213}, {25, 194}, {115, 168}, {63, 227}, {120, 164}, {81, 141}, {84, 139}, {110, 177}, {78, 174}, {92, 188}, {52, 213}, {127, 157}, {49, 210}, {93, 185}, {12, 233}, {53, 208}, {47, 202}, {13, 232}, {89, 188}, {49, 214}, {58, 221}, {60, 212}, {74, 163}, {39, 204}, {43, 192}, {42, 193}, {115, 152}, {48, 220}, {111, 131}, {80, 189}, {89, 180}, {62, 208}, {86, 184}, {12, 227}, {78, 161}, {113, 158}, {114, 130}, {20, 229}, {24, 233}, {89, 168}, {22, 228}, {37, 215}, {87, 165}, {100, 150}, {53, 198}, {88, 171}, {38, 210}, {72, 188}, {102, 147}, {55, 192}, {64, 183}, {118, 143}, {90, 160}, {28, 231}, {70, 189}, {110, 149}, {72, 180}, {39, 218}, {96, 157}, {113, 140}, {52, 202}, {115, 141}, {102, 153}, {103, 152} }>;

(II) A more general form is to represent the graph as the orbit of {220, 221} under the group generated by the following permutations:

a: (1, 2, 175, 172, 157, 153)(3, 131, 180, 196, 159, 25)(4, 138, 179, 195, 160, 26)(5, 182, 171, 114, 156, 103)(6, 187, 178, 113, 155, 104)(7, 176, 177, 152, 154, 8)(9, 49, 174, 223, 158, 56)(10, 50, 173, 224, 151, 55)(11, 188, 206, 120, 127, 102)(12, 117, 208, 101, 130, 190)(13, 58, 204, 45, 124, 226)(14, 51, 203, 46, 123, 225)(15, 80, 210, 239, 128, 63)(16, 79, 209, 240, 121, 64)(17, 112, 201, 108, 129, 189)(18, 181, 205, 119, 122, 107)(19, 93, 207, 34, 126, 219)(20, 94, 202, 33, 125, 220)(21, 212, 135, 98, 197, 32)(22, 100, 132, 35, 193, 211)(23, 146, 140, 81, 199, 165)(24, 145, 139, 88, 200, 166)(27, 99, 137, 36, 194, 218)(28, 217, 136, 91, 192, 37)(29, 198, 134)(30, 191, 133)(31, 43, 215, 222, 96, 54)(38, 44, 216, 227, 95, 53)(39, 66, 214, 78, 97, 235)(40, 65, 213, 71, 92, 236)(41, 72, 230, 233, 57, 62)(42, 237, 228, 61, 60, 75)(47, 232, 221, 68, 59, 76)(48, 77, 229, 234, 52, 67)(69, 84, 74, 169, 238, 143)(70, 83, 73, 170, 231, 144)(82, 161, 162, 150, 148, 85)(86, 87, 168, 167, 149, 141)(89, 106, 164, 185, 147, 111)(90, 105, 163, 186, 142, 118)(109, 116, 183)(110, 115, 184)
b: (2, 103)(3, 154)(4, 153)(5, 56)(6, 55)(7, 104)(9, 26)(10, 25)(11, 51)(12, 188)(13, 94)(14, 93)(15, 117)(16, 112)(17, 181)(18, 58)(19, 80)(20, 79)(21, 31)(22, 76)(23, 204)(24, 203)(27, 75)(28, 38)(29, 67)(30, 62)(32, 193)(33, 44)(34, 43)(35, 66)(36, 65)(37, 194)(39, 126)(40, 125)(41, 119)(42, 240)(47, 239)(48, 120)(49, 108)(50, 101)(52, 130)(53, 164)(54, 163)(57, 129)(59, 116)(60, 115)(61, 91)(63, 180)(64, 179)(68, 98)(69, 81)(70, 88)(72, 227)(73, 135)(74, 136)(77, 222)(82, 140)(83, 118)(84, 111)(87, 139)(89, 148)(90, 141)(92, 233)(97, 234)(99, 158)(100, 151)(102, 176)(105, 131)(106, 138)(107, 175)(109, 187)(110, 182)(113, 214)(114, 213)(122, 143)(123, 221)(124, 228)(127, 144)(132, 168)(133, 199)(134, 200)(137, 161)(142, 183)(145, 155)(146, 156)(147, 184)(149, 208)(150, 201)(152, 212)(157, 217)(159, 198)(160, 191)(162, 202)(165, 192)(166, 197)(167, 207)(169, 236)(170, 235)(171, 189)(172, 220)(173, 225)(174, 226)(177, 219)(178, 190)(185, 205)(186, 206)(195, 218)(196, 211)(209, 238)(210, 231)(215, 224)(216, 223)(229, 232)(230, 237)
c: (1, 3, 2, 6)(4, 7, 5, 8)(9, 10)(11, 56, 212, 49)(12, 58, 211, 44)(13, 54, 216, 46)(14, 53, 215, 45)(15, 60, 214, 41)(16, 59, 213, 48)(17, 51, 218, 43)(18, 55, 217, 50)(19, 57, 219, 42)(20, 52, 220, 47)(21, 147, 188, 165)(22, 143, 190, 169)(23, 149, 185, 167)(24, 150, 186, 162)(25, 146, 187, 164)(26, 145, 182, 163)(27, 144, 189, 170)(28, 142, 181, 166)(29, 148, 183, 161)(30, 141, 184, 168)(31, 62, 203, 75)(32, 65, 206, 79)(33, 68, 202, 77)(34, 61, 207, 72)(35, 69, 208, 74)(36, 70, 201, 73)(37, 66, 205, 80)(38, 67, 204, 76)(39, 64, 210, 71)(40, 63, 209, 78)(81, 86, 89, 87)(82, 88, 85, 90)(83, 84)(91, 139, 122, 105)(92, 135, 121, 102)(93, 133, 126, 110)(94, 134, 125, 109)(95, 132, 124, 101)(96, 137, 123, 108)(97, 136, 128, 107)(98, 140, 127, 106)(99, 131, 129, 104)(100, 138, 130, 103)(111, 155, 199, 180)(112, 159, 194, 178)(113, 157, 196, 172)(114, 152, 195, 177)(115, 154, 191, 176)(116, 153, 198, 175)(117, 160, 193, 171)(118, 156, 200, 179)(119, 151, 192, 173)(120, 158, 197, 174)(221, 226, 229, 227)(222, 228, 225, 230)(223, 224)(231, 238)(232, 240, 234, 236)(233, 235, 237, 239)
d: (2, 153)(3, 104)(4, 103)(5, 26)(6, 25)(7, 154)(9, 56)(10, 55)(11, 21)(12, 193)(13, 44)(14, 43)(15, 66)(16, 65)(17, 194)(18, 28)(19, 126)(20, 125)(22, 130)(23, 164)(24, 163)(27, 129)(29, 116)(30, 115)(31, 51)(32, 188)(33, 94)(34, 93)(35, 117)(36, 112)(37, 181)(38, 58)(39, 80)(40, 79)(41, 61)(42, 233)(45, 95)(46, 96)(47, 234)(48, 68)(49, 158)(50, 151)(52, 76)(53, 204)(54, 203)(57, 75)(59, 67)(60, 62)(63, 214)(64, 213)(69, 84)(70, 83)(71, 121)(72, 228)(73, 144)(74, 143)(77, 221)(78, 128)(81, 111)(82, 148)(87, 141)(88, 118)(89, 140)(90, 139)(91, 119)(92, 240)(97, 239)(98, 120)(99, 108)(100, 101)(102, 212)(105, 145)(106, 146)(107, 217)(109, 198)(110, 191)(113, 180)(114, 179)(122, 136)(123, 222)(124, 227)(127, 135)(131, 155)(132, 208)(133, 184)(134, 183)(137, 201)(138, 156)(142, 200)(147, 199)(149, 168)(150, 161)(152, 176)(157, 175)(159, 187)(160, 182)(165, 185)(166, 186)(169, 238)(170, 231)(171, 195)(173, 224)(174, 223)(178, 196)(189, 218)(190, 211)(192, 205)(197, 206)(209, 236)(210, 235)(215, 225)(216, 226)(229, 232)(230, 237)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 91 ]
240
-1 11 51 31 21
-2 188 212 203 43
-3 56 147 62 218
-4 176 93 193 163
-5 154 145 126 117
-6 165 49 17 75
-7 133 26 115 171
-8 110 191 160 182
-9 66 80 104 131
-10 99 37 205 129
-11 1 111 71 41
-12 233 103 148 227
-13 22 232 116 97
-14 69 213 205 153
-15 56 95 85 129
-16 47 135 215 109
-17 210 6 83 173
-18 123 170 151 142
-19 26 171 140 164
-20 77 68 59 229
-21 121 1 81 61
-22 13 179 162 228
-23 187 168 126 98
-24 143 233 103 136
-25 57 158 194 185
-26 35 105 7 19
-27 55 66 73 131
-28 231 200 222 50
-29 44 71 40 95
-30 154 176 149 87
-31 121 1 69 91
-32 140 228 240 153
-33 67 232 47 52
-34 165 111 179 103
-35 45 26 85 75
-36 144 159 173 97
-37 88 170 215 10
-38 77 210 101 134
-39 56 148 204 218
-40 123 29 229 120
-41 11 88 101 131
-42 187 193 163 98
-43 2 192 84 64
-44 29 239 130 229
-45 66 35 59 116
-46 169 236 107 175
-47 33 202 16 226
-48 220 92 125 53
-49 210 180 214 6
-50 189 137 28 119
-51 1 71 84 119
-52 33 202 213 227
-53 198 80 48 208
-54 143 136 240 153
-55 27 181 192 108
-56 155 3 15 39
-57 145 25 127 117
-58 100 221 235 183
-59 121 45 94 20
-60 132 90 212 104
-61 100 155 118 21
-62 3 102 139 208
-63 158 148 227 108
-64 212 183 43 76
-65 198 234 225 127
-66 45 27 85 9
-67 33 125 71 95
-68 220 204 20 240
-69 90 145 14 31
-70 189 136 194 119
-71 11 67 29 51
-72 188 200 180 130
-73 112 27 192 107
-74 88 203 215 163
-75 35 135 6 105
-76 124 202 94 64
-77 220 38 236 20
-78 137 226 161 174
-79 232 222 116 98
-80 189 82 9 53
-81 155 93 141 21
-82 80 214 193 208
-83 122 91 17 218
-84 105 51 139 43
-85 66 35 15 117
-86 133 199 147 184
-87 110 165 111 30
-88 37 171 41 74
-89 188 168 180 126
-90 69 60 160 205
-91 145 83 151 31
-92 198 188 48 203
-93 4 81 114 185
-94 234 59 229 76
-95 67 15 29 117
-96 209 157 238 217
-97 13 36 223 162
-98 23 79 172 42
-99 180 170 214 10
-100 58 61 150 195
-101 38 171 161 41
-102 147 213 62 153
-103 12 34 24 152
-104 199 189 60 9
-105 26 84 75 119
-106 167 206 196 219
-107 46 224 73 186
-108 55 231 113 63
-109 16 204 226 240
-110 177 149 8 87
-111 11 34 87 131
-112 187 224 73 239
-113 158 140 228 108
-114 176 200 93 130
-115 168 7 141 152
-116 121 45 13 79
-117 57 5 95 85
-118 143 181 61 195
-119 70 50 105 51
-120 233 40 172 164
-121 59 116 31 21
-122 203 83 173 163
-123 238 18 172 40
-124 214 193 183 76
-125 67 221 232 48
-126 23 89 5 195
-127 57 157 185 65
-128 201 223 150 216
-129 144 155 15 10
-130 44 114 72 162
-131 111 27 41 9
-132 60 148 160 204
-133 167 7 86 152
-134 213 38 236 227
-135 165 16 75 175
-136 24 70 224 54
-137 231 78 50 196
-138 177 211 207 186
-139 192 182 62 84
-140 113 149 19 32
-141 81 191 115 185
-142 179 18 238 228
-143 24 225 118 54
-144 36 205 129 217
-145 57 69 91 5
-146 167 178 197 219
-147 3 102 86 207
-148 132 12 39 63
-149 110 30 140 164
-150 100 190 235 128
-151 91 201 18 218
-152 133 179 103 115
-153 14 102 32 54
-154 5 30 184 195
-155 56 81 61 129
-156 166 177 190 207
-157 225 127 96 197
-158 25 113 235 63
-159 233 36 223 164
-160 132 90 8 219
-161 78 210 101 211
-162 22 239 97 130
-163 122 4 74 42
-164 159 149 19 120
-165 34 135 6 87
-166 156 238 217 230
-167 133 146 106 184
-168 23 89 191 115
-169 46 200 222 186
-170 99 201 37 18
-171 88 101 7 19
-172 123 222 98 120
-173 122 36 17 217
-174 187 78 239 196
-175 46 135 215 206
-176 4 114 30 184
-177 110 156 191 138
-178 146 201 223 237
-179 22 34 152 142
-180 99 89 49 72
-181 55 231 225 118
-182 139 8 208 219
-183 209 58 124 64
-184 154 176 167 86
-185 25 93 127 141
-186 169 138 237 107
-187 23 112 42 174
-188 89 2 92 72
-189 80 70 104 50
-190 156 150 216 230
-191 177 168 8 141
-192 55 73 139 43
-193 124 4 82 42
-194 25 70 224 235
-195 154 100 126 118
-196 137 106 174 230
-197 209 146 157 237
-198 92 216 53 65
-199 212 104 86 207
-200 114 169 28 72
-201 178 170 128 151
-202 47 234 52 76
-203 122 2 92 74
-204 132 68 39 109
-205 144 90 14 10
-206 236 106 175 230
-207 199 156 147 138
-208 82 182 62 53
-209 221 183 96 197
-210 38 49 17 161
-211 138 226 237 161
-212 199 2 60 64
-213 134 14 102 52
-214 99 124 49 82
-215 37 16 74 175
-216 198 190 234 128
-217 144 166 96 173
-218 3 39 83 151
-219 146 160 182 106
-220 77 221 68 48
-221 209 220 58 125
-222 79 169 28 172
-223 178 159 128 97
-224 112 136 194 107
-225 143 157 181 65
-226 78 211 47 109
-227 12 134 52 63
-228 22 113 32 142
-229 44 94 40 20
-230 166 190 206 196
-231 137 181 28 108
-232 33 13 79 125
-233 12 24 159 120
-234 202 94 216 65
-235 58 158 150 194
-236 77 46 134 206
-237 178 211 186 197
-238 166 123 96 142
-239 44 112 162 174
-240 68 32 54 109
0

**************