[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 92 ] =
UG(ATD[240,153]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {17, 25}, {150, 158}, {39, 47}, {84, 93}, {1, 11}, {68, 79},
{165, 174}, {80, 91}, {70, 74}, {83, 94}, {146, 159}, {35, 45}, {50, 60}, {14,
30}, {7, 22}, {201, 216}, {139, 154}, {37, 55}, {207, 221}, {135, 149}, {2, 17},
{1, 21}, {43, 61}, {167, 177}, {110, 120}, {45, 58}, {136, 159}, {75, 92}, {65,
89}, {161, 184}, {98, 120}, {77, 81}, {167, 187}, {78, 82}, {69, 88}, {1, 31},
{203, 213}, {34, 60}, {105, 118}, {197, 218}, {139, 148}, {143, 175}, {201,
233}, {11, 41}, {156, 190}, {75, 105}, {12, 47}, {207, 236}, {194, 225}, {66,
97}, {19, 55}, {70, 98}, {79, 107}, {93, 121}, {27, 62}, {131, 166}, {129, 164},
{3, 37}, {197, 227}, {133, 163}, {10, 44}, {82, 116}, {90, 125}, {21, 61}, {193,
233}, {66, 106}, {18, 59}, {148, 189}, {5, 47}, {158, 180}, {134, 173}, {153,
181}, {194, 238}, {22, 56}, {205, 227}, {26, 52}, {86, 120}, {64, 112}, {213,
229}, {74, 122}, {28, 45}, {217, 232}, {87, 102}, {1, 51}, {153, 171}, {128,
178}, {74, 120}, {93, 111}, {132, 178}, {214, 224}, {29, 42}, {143, 184}, {73,
126}, {69, 114}, {145, 168}, {147, 169}, {29, 38}, {69, 126}, {84, 104}, {135,
187}, {132, 185}, {214, 235}, {10, 52}, {146, 172}, {25, 39}, {77, 115}, {13,
77}, {23, 87}, {32, 97}, {55, 118}, {42, 107}, {4, 70}, {135, 197}, {49, 115},
{28, 95}, {137, 202}, {57, 122}, {21, 81}, {148, 208}, {31, 91}, {7, 65}, {160,
230}, {9, 78}, {48, 119}, {17, 89}, {160, 232}, {156, 212}, {148, 220}, {12,
69}, {164, 237}, {159, 214}, {33, 104}, {5, 79}, {141, 199}, {137, 195}, {131,
201}, {51, 121}, {15, 68}, {175, 228}, {169, 226}, {147, 216}, {27, 80}, {11,
71}, {171, 231}, {57, 117}, {41, 101}, {34, 111}, {169, 231}, {15, 95}, {32,
113}, {47, 126}, {28, 78}, {183, 229}, {177, 227}, {156, 206}, {150, 196}, {62,
109}, {152, 203}, {188, 228}, {7, 94}, {177, 232}, {150, 207}, {15, 85}, {156,
199}, {57, 101}, {58, 102}, {186, 231}, {183, 233}, {133, 229}, {8, 105}, {137,
232}, {38, 68}, {164, 198}, {163, 193}, {160, 195}, {11, 111}, {134, 226}, {20,
112}, {15, 107}, {40, 77}, {58, 95}, {51, 84}, {59, 92}, {53, 82}, {35, 75},
{46, 70}, {8, 97}, {167, 205}, {191, 213}, {20, 127}, {176, 219}, {40, 67},
{134, 234}, {187, 214}, {174, 192}, {181, 219}, {9, 102}, {43, 91}, {179, 194},
{19, 97}, {168, 218}, {158, 236}, {146, 224}, {21, 103}, {30, 106}, {184, 204},
{51, 71}, {41, 93}, {60, 73}, {182, 195}, {173, 216}, {164, 209}, {2, 116},
{151, 225}, {149, 227}, {35, 85}, {6, 112}, {10, 125}, {31, 103}, {179, 203},
{163, 219}, {149, 237}, {166, 223}, {185, 192}, {182, 207}, {30, 100}, {144,
234}, {43, 81}, {20, 104}, {176, 204}, {37, 90}, {44, 83}, {13, 141}, {30, 158},
{14, 143}, {41, 171}, {54, 180}, {81, 211}, {108, 238}, {110, 237}, {6, 130},
{64, 196}, {116, 240}, {56, 190}, {84, 210}, {26, 157}, {59, 188}, {63, 183},
{86, 222}, {2, 139}, {59, 178}, {50, 187}, {89, 208}, {40, 162}, {43, 161}, {17,
154}, {48, 188}, {124, 240}, {13, 131}, {67, 205}, {90, 212}, {5, 138}, {18,
157}, {94, 209}, {96, 239}, {32, 176}, {36, 180}, {86, 198}, {40, 185}, {7,
149}, {73, 219}, {64, 210}, {63, 173}, {18, 128}, {8, 155}, {119, 228}, {5,
145}, {24, 140}, {114, 230}, {36, 189}, {119, 238}, {48, 170}, {67, 217}, {65,
218}, {125, 230}, {76, 215}, {16, 140}, {27, 135}, {89, 197}, {122, 231}, {33,
191}, {50, 172}, {64, 223}, {32, 129}, {102, 196}, {106, 200}, {35, 128}, {76,
239}, {99, 192}, {96, 196}, {3, 166}, {114, 215}, {4, 162}, {127, 217}, {46,
136}, {106, 204}, {26, 189}, {122, 221}, {29, 186}, {37, 141}, {38, 142}, {10,
160}, {72, 226}, {76, 230}, {49, 157}, {65, 237}, {63, 147}, {117, 217}, {20,
185}, {39, 138}, {99, 206}, {16, 190}, {60, 146}, {34, 140}, {12, 163}, {124,
211}, {14, 161}, {61, 141}, {110, 222}, {113, 193}, {25, 168}, {48, 130}, {127,
205}, {52, 134}, {83, 225}, {92, 238}, {29, 174}, {24, 172}, {49, 132}, {45,
155}, {56, 142}, {88, 239}, {125, 202}, {101, 221}, {42, 147}, {83, 234}, {100,
221}, {33, 154}, {34, 153}, {80, 235}, {12, 176}, {44, 144}, {27, 167}, {16,
172}, {118, 202}, {54, 139}, {113, 204}, {31, 161}, {61, 131}, {96, 223}, {127,
192}, {110, 209}, {87, 150}, {115, 178}, {109, 175}, {66, 129}, {117, 182}, {3,
199}, {85, 145}, {92, 152}, {117, 177}, {53, 240}, {73, 140}, {14, 200}, {121,
191}, {78, 136}, {99, 165}, {22, 209}, {67, 132}, {109, 170}, {23, 223}, {123,
179}, {42, 226}, {25, 208}, {94, 151}, {3, 201}, {98, 169}, {126, 181}, {116,
191}, {24, 212}, {123, 183}, {82, 159}, {104, 165}, {8, 198}, {18, 220}, {85,
155}, {95, 145}, {23, 216}, {53, 229}, {71, 151}, {100, 180}, {107, 186}, {115,
162}, {88, 138}, {100, 182}, {108, 190}, {90, 137}, {6, 210}, {22, 194}, {19,
198}, {72, 157}, {62, 235}, {112, 165}, {58, 236}, {2, 213}, {71, 144}, {4,
211}, {86, 129}, {98, 186}, {19, 202}, {56, 225}, {50, 235}, {4, 222}, {62,
228}, {111, 181}, {13, 211}, {124, 162}, {46, 240}, {16, 206}, {24, 199}, {80,
143}, {108, 179}, {74, 171}, {96, 130}, {108, 142}, {52, 215}, {123, 152}, {121,
154}, {55, 212}, {9, 236}, {72, 173}, {54, 208}, {76, 170}, {79, 168}, {38,
206}, {6, 239}, {9, 224}, {105, 128}, {68, 174}, {36, 200}, {49, 220}, {99,
142}, {118, 155}, {109, 130}, {119, 152}, {26, 234}, {46, 222}, {103, 151}, {87,
166}, {88, 170}, {33, 210}, {91, 175}, {124, 136}, {113, 133}, {72, 189}, {75,
188}, {103, 144}, {36, 220}, {114, 138}, {57, 195}, {66, 184}, {44, 215}, {28,
224}, {101, 153}, {39, 218}, {23, 233}, {123, 133}, {63, 193}, {54, 200}, {53,
203} }>;
(II) A more general form is to represent the graph as the orbit of {17, 25}
under the group generated by the following permutations:
a: (1, 2, 4, 7)(3, 5)(6, 9, 8, 10)(11, 213, 70, 22)(12, 216, 68, 24)(13, 218,
61, 25)(14, 220, 67, 27)(15, 212, 69, 23)(16, 219, 63, 29)(17, 211, 65, 21)(18,
217, 62, 30)(19, 215, 64, 28)(20, 214, 66, 26)(31, 139, 162, 149)(32, 134, 165,
146)(33, 136, 164, 144)(34, 133, 169, 142)(35, 137, 170, 150)(36, 132, 167,
143)(37, 138, 166, 145)(38, 140, 163, 147)(39, 131, 168, 141)(40, 135, 161,
148)(41, 203, 74, 194)(42, 206, 73, 193)(43, 208, 77, 197)(44, 210, 78, 198)(45,
202, 76, 196)(46, 209, 71, 191)(47, 201, 79, 199)(48, 207, 75, 195)(49, 205, 80,
200)(50, 204, 72, 192)(51, 116, 222, 94)(52, 112, 224, 97)(53, 120, 225, 93)(54,
115, 227, 91)(55, 114, 223, 95)(56, 111, 229, 98)(57, 119, 221, 92)(58, 118,
230, 96)(59, 117, 228, 100)(60, 113, 226, 99)(81, 89)(82, 86, 83, 84)(85, 90,
88, 87)(101, 152, 122, 238)(102, 155, 125, 239)(103, 154, 124, 237)(104, 159,
129, 234)(105, 160, 130, 236)(106, 157, 127, 235)(107, 156, 126, 233)(108, 153,
123, 231)(109, 158, 128, 232)(110, 151, 121, 240)(171, 179)(172, 176, 173,
174)(175, 180, 178, 177)(181, 183, 186, 190)(182, 188)(184, 189, 185, 187) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 122)(3, 62)(4, 200)(5, 68)(6, 140)(7, 134)(8, 128)(10, 194)(11, 51)(12,
192)(13, 143)(14, 211)(15, 145)(16, 239)(17, 231)(18, 198)(19, 59)(20, 219)(21,
31)(22, 52)(23, 187)(24, 130)(25, 186)(26, 209)(27, 201)(28, 58)(29, 39)(30,
124)(32, 132)(33, 153)(34, 210)(35, 155)(36, 222)(37, 228)(38, 138)(40, 204)(41,
121)(42, 218)(44, 225)(46, 180)(47, 174)(48, 212)(49, 129)(50, 223)(53, 182)(54,
70)(55, 188)(56, 215)(57, 213)(60, 64)(61, 91)(63, 227)(65, 226)(66, 115)(67,
113)(69, 99)(72, 237)(73, 112)(74, 139)(75, 118)(76, 190)(77, 184)(78, 236)(80,
131)(81, 161)(82, 207)(84, 111)(86, 220)(87, 214)(88, 206)(89, 169)(90, 119)(92,
202)(94, 234)(96, 172)(97, 178)(98, 208)(100, 240)(101, 191)(102, 224)(104,
181)(106, 162)(107, 168)(108, 230)(109, 199)(110, 189)(114, 142)(116, 221)(117,
229)(120, 148)(123, 232)(125, 238)(126, 165)(127, 163)(133, 217)(135, 216)(136,
158)(137, 152)(141, 175)(144, 151)(146, 196)(147, 197)(149, 173)(150, 159)(154,
171)(156, 170)(157, 164)(160, 179)(166, 235)(167, 233)(176, 185)(177, 183)(193,
205)(195, 203)
c: (2, 3)(4, 6)(5, 8)(7, 10)(11, 31)(12, 32)(13, 33)(14, 34)(15, 35)(16, 36)(17,
37)(18, 38)(19, 39)(20, 40)(21, 51)(22, 52)(23, 53)(24, 54)(25, 55)(26, 56)(27,
57)(28, 58)(29, 59)(30, 60)(41, 91)(42, 92)(43, 93)(44, 94)(45, 95)(46, 96)(47,
97)(48, 98)(49, 99)(50, 100)(61, 121)(62, 122)(63, 123)(64, 124)(65, 125)(66,
126)(67, 127)(68, 128)(69, 129)(70, 130)(71, 103)(72, 108)(73, 106)(74, 109)(75,
107)(76, 110)(77, 104)(78, 102)(79, 105)(80, 101)(81, 84)(82, 87)(86, 88)(89,
90)(111, 161)(112, 162)(113, 163)(114, 164)(115, 165)(116, 166)(117, 167)(118,
168)(119, 169)(120, 170)(131, 191)(132, 192)(133, 193)(134, 194)(135, 195)(136,
196)(137, 197)(138, 198)(139, 199)(140, 200)(141, 154)(142, 157)(143, 153)(144,
151)(145, 155)(146, 158)(147, 152)(148, 156)(149, 160)(150, 159)(171, 175)(172,
180)(173, 179)(174, 178)(181, 184)(182, 187)(186, 188)(189, 190)(201, 213)(202,
218)(203, 216)(204, 219)(205, 217)(206, 220)(207, 214)(208, 212)(209, 215)(210,
211)(221, 235)(222, 239)(223, 240)(224, 236)(225, 234)(226, 238)(227, 232)(228,
231)(229, 233)(230, 237)
C4[ 240, 92 ]
240
-1 11 51 31 21
-2 213 17 116 139
-3 166 199 201 37
-4 211 222 70 162
-5 79 145 47 138
-6 210 112 239 130
-7 22 94 149 65
-8 198 155 105 97
-9 78 102 224 236
-10 44 125 160 52
-11 1 111 71 41
-12 176 47 69 163
-13 77 211 141 131
-14 143 200 161 30
-15 68 95 85 107
-16 190 172 140 206
-17 154 89 2 25
-18 220 157 59 128
-19 55 198 202 97
-20 112 104 127 185
-21 1 81 103 61
-22 209 56 7 194
-23 233 223 216 87
-24 199 212 172 140
-25 168 17 39 208
-26 189 157 234 52
-27 167 80 135 62
-28 45 78 224 95
-29 38 42 174 186
-30 100 14 158 106
-31 1 91 103 161
-32 176 113 129 97
-33 154 210 191 104
-34 111 60 140 153
-35 45 128 85 75
-36 220 189 200 180
-37 55 90 3 141
-38 68 29 206 142
-39 25 47 138 218
-40 77 67 162 185
-41 11 101 93 171
-42 147 226 29 107
-43 91 81 61 161
-44 144 83 215 10
-45 155 35 58 28
-46 222 70 136 240
-47 12 5 126 39
-48 188 170 119 130
-49 132 220 157 115
-50 187 235 60 172
-51 121 1 71 84
-52 134 26 215 10
-53 82 203 229 240
-54 200 180 139 208
-55 212 37 19 118
-56 22 190 225 142
-57 122 101 117 195
-58 45 102 236 95
-59 188 178 92 18
-60 34 146 50 73
-61 141 21 43 131
-62 235 27 228 109
-63 147 193 183 173
-64 210 112 223 196
-65 89 237 7 218
-66 106 129 184 97
-67 132 40 205 217
-68 79 15 38 174
-69 88 12 114 126
-70 46 4 74 98
-71 11 144 51 151
-72 189 157 226 173
-73 60 126 140 219
-74 122 70 171 120
-75 188 35 92 105
-76 170 215 239 230
-77 13 81 115 40
-78 136 82 28 9
-79 68 168 5 107
-80 143 91 235 27
-81 77 211 21 43
-82 78 159 116 53
-83 44 234 225 94
-84 210 93 104 51
-85 155 35 145 15
-86 198 222 129 120
-87 23 166 102 150
-88 69 170 138 239
-89 17 65 197 208
-90 212 37 125 137
-91 80 31 43 175
-92 59 238 75 152
-93 121 111 84 41
-94 209 83 7 151
-95 145 58 15 28
-96 223 239 130 196
-97 66 8 19 32
-98 70 169 120 186
-99 165 192 206 142
-100 221 180 182 30
-101 221 57 41 153
-102 58 9 196 87
-103 144 151 31 21
-104 33 165 84 20
-105 128 8 118 75
-106 66 200 204 30
-107 79 15 42 186
-108 179 190 238 142
-109 170 62 130 175
-110 209 222 237 120
-111 11 34 93 181
-112 165 6 20 64
-113 133 193 204 32
-114 69 138 215 230
-115 77 178 49 162
-116 2 191 82 240
-117 177 57 182 217
-118 55 155 202 105
-119 48 238 228 152
-120 110 74 86 98
-121 154 191 93 51
-122 231 221 57 74
-123 133 179 183 152
-124 211 136 162 240
-125 90 202 10 230
-126 47 69 181 73
-127 192 205 217 20
-128 35 178 105 18
-129 66 86 32 164
-130 48 6 96 109
-131 166 13 201 61
-132 67 178 49 185
-133 123 113 163 229
-134 234 226 52 173
-135 187 27 149 197
-136 78 46 124 159
-137 232 90 202 195
-138 88 114 5 39
-139 154 2 148 54
-140 34 24 16 73
-141 199 13 37 61
-142 99 56 38 108
-143 14 80 184 175
-144 44 234 103 71
-145 168 5 95 85
-146 224 60 159 172
-147 169 216 63 42
-148 220 189 139 208
-149 135 237 7 227
-150 158 196 207 87
-151 103 71 225 94
-152 123 92 203 119
-153 34 101 181 171
-154 33 121 17 139
-155 45 8 85 118
-156 199 190 212 206
-157 26 49 72 18
-158 180 236 150 30
-159 146 136 82 214
-160 232 195 10 230
-161 14 184 31 43
-162 124 4 115 40
-163 12 133 193 219
-164 198 209 237 129
-165 99 112 104 174
-166 3 223 87 131
-167 187 177 27 205
-168 79 145 25 218
-169 231 147 226 98
-170 88 48 76 109
-171 231 41 74 153
-172 24 146 16 50
-173 134 72 216 63
-174 165 68 192 29
-175 143 91 228 109
-176 12 204 32 219
-177 232 167 117 227
-178 132 59 115 128
-179 123 203 194 108
-180 100 36 158 54
-181 111 126 153 219
-182 100 117 195 207
-183 123 233 63 229
-184 66 143 204 161
-185 132 192 40 20
-186 231 29 107 98
-187 167 135 214 50
-188 48 59 228 75
-189 36 26 148 72
-190 56 156 16 108
-191 33 121 213 116
-192 99 127 174 185
-193 233 113 63 163
-194 22 179 225 238
-195 57 137 160 182
-196 102 150 96 64
-197 89 135 227 218
-198 8 19 86 164
-199 24 156 3 141
-200 14 36 106 54
-201 233 3 216 131
-202 125 137 19 118
-203 179 213 53 152
-204 176 113 106 184
-205 67 167 127 227
-206 99 156 16 38
-207 221 236 182 150
-208 89 25 148 54
-209 22 110 94 164
-210 33 6 84 64
-211 13 124 4 81
-212 55 24 90 156
-213 2 191 203 229
-214 187 224 235 159
-215 44 114 52 76
-216 23 201 147 173
-217 67 232 127 117
-218 168 39 65 197
-219 176 181 73 163
-220 36 49 148 18
-221 100 122 101 207
-222 110 46 4 86
-223 23 166 96 64
-224 146 214 28 9
-225 56 83 194 151
-226 134 169 72 42
-227 177 149 205 197
-228 188 62 119 175
-229 133 213 183 53
-230 114 125 160 76
-231 122 169 171 186
-232 177 137 160 217
-233 23 201 193 183
-234 144 134 26 83
-235 80 214 50 62
-236 58 158 9 207
-237 110 149 65 164
-238 92 194 108 119
-239 88 6 96 76
-240 46 124 116 53
0