[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 94 ] =
UG(ATD[240,156]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {72, 74}, {1, 2}, {1, 5}, {211, 215}, {146, 150}, {25, 29}, {3,
7}, {2, 6}, {130, 135}, {193, 196}, {64, 70}, {147, 149}, {101, 109}, {147,
155}, {146, 154}, {131, 139}, {116, 124}, {53, 60}, {176, 185}, {69, 76}, {71,
78}, {3, 9}, {2, 14}, {4, 8}, {2, 15}, {133, 136}, {112, 126}, {10, 27}, {206,
223}, {74, 88}, {173, 191}, {9, 26}, {169, 186}, {4, 16}, {68, 80}, {13, 25},
{12, 24}, {9, 29}, {7, 19}, {6, 18}, {5, 17}, {141, 154}, {70, 94}, {143, 151},
{78, 86}, {14, 23}, {67, 90}, {35, 58}, {139, 145}, {199, 221}, {11, 16}, {192,
219}, {13, 22}, {8, 20}, {11, 23}, {10, 22}, {9, 21}, {32, 61}, {34, 63}, {37,
59}, {203, 213}, {33, 62}, {173, 178}, {103, 120}, {23, 55}, {200, 232}, {134,
166}, {5, 36}, {198, 231}, {144, 177}, {66, 99}, {7, 38}, {73, 104}, {5, 39},
{145, 179}, {27, 57}, {26, 56}, {8, 42}, {71, 101}, {6, 37}, {67, 96}, {31, 60},
{23, 52}, {19, 48}, {15, 44}, {89, 122}, {81, 117}, {20, 49}, {30, 59}, {22,
51}, {28, 58}, {214, 240}, {201, 239}, {138, 172}, {12, 43}, {197, 226}, {21,
50}, {207, 229}, {69, 110}, {8, 36}, {193, 237}, {24, 53}, {195, 238}, {138,
167}, {6, 40}, {7, 41}, {25, 54}, {197, 234}, {194, 237}, {72, 103}, {153, 169},
{148, 165}, {149, 166}, {208, 228}, {29, 40}, {218, 239}, {30, 43}, {14, 56},
{209, 230}, {67, 123}, {209, 233}, {154, 163}, {69, 127}, {152, 162}, {87, 108},
{141, 182}, {151, 171}, {16, 45}, {222, 227}, {217, 228}, {216, 229}, {205,
240}, {64, 125}, {27, 38}, {18, 47}, {65, 127}, {17, 46}, {151, 168}, {152,
216}, {161, 225}, {155, 219}, {46, 111}, {168, 233}, {150, 215}, {55, 118}, {53,
116}, {51, 114}, {49, 112}, {40, 106}, {165, 231}, {152, 218}, {148, 214}, {59,
121}, {58, 120}, {44, 110}, {41, 107}, {50, 113}, {159, 220}, {145, 210}, {63,
124}, {54, 117}, {18, 87}, {62, 123}, {59, 126}, {32, 102}, {160, 230}, {143,
201}, {128, 198}, {43, 109}, {42, 108}, {38, 96}, {33, 103}, {17, 86}, {61,
122}, {52, 115}, {36, 99}, {142, 199}, {164, 237}, {34, 104}, {165, 239}, {162,
232}, {155, 209}, {19, 88}, {16, 92}, {42, 102}, {19, 95}, {18, 94}, {17, 93},
{20, 89}, {167, 234}, {148, 217}, {51, 126}, {24, 85}, {39, 105}, {57, 119},
{21, 90}, {143, 192}, {129, 209}, {157, 204}, {162, 240}, {34, 113}, {189, 238},
{150, 197}, {35, 112}, {15, 91}, {137, 221}, {133, 208}, {135, 210}, {56, 111},
{3, 91}, {27, 66}, {157, 196}, {140, 213}, {133, 220}, {15, 85}, {137, 211},
{48, 106}, {37, 127}, {26, 65}, {142, 213}, {26, 70}, {143, 211}, {153, 196},
{28, 67}, {141, 210}, {1, 97}, {132, 228}, {47, 79}, {45, 77}, {129, 224}, {185,
216}, {35, 64}, {181, 214}, {180, 215}, {164, 199}, {172, 201}, {134, 224},
{171, 205}, {168, 207}, {179, 219}, {191, 215}, {182, 223}, {10, 102}, {135,
235}, {136, 229}, {183, 218}, {131, 236}, {47, 95}, {147, 226}, {32, 82}, {175,
221}, {156, 238}, {157, 238}, {158, 237}, {20, 96}, {190, 202}, {173, 217},
{166, 210}, {146, 230}, {22, 98}, {21, 97}, {11, 126}, {174, 219}, {158, 232},
{167, 208}, {188, 203}, {185, 192}, {31, 101}, {24, 99}, {177, 202}, {156, 231},
{38, 93}, {36, 95}, {34, 94}, {25, 100}, {163, 222}, {161, 220}, {159, 226},
{170, 212}, {144, 239}, {52, 181}, {54, 183}, {44, 174}, {49, 179}, {48, 178},
{45, 175}, {72, 202}, {87, 213}, {53, 182}, {58, 185}, {4, 128}, {63, 187}, {41,
172}, {43, 173}, {50, 180}, {101, 227}, {61, 186}, {98, 229}, {103, 224}, {73,
193}, {41, 160}, {71, 206}, {107, 226}, {110, 231}, {46, 164}, {89, 211}, {42,
161}, {62, 181}, {60, 183}, {104, 227}, {39, 171}, {71, 203}, {109, 225}, {44,
162}, {45, 163}, {55, 184}, {105, 230}, {125, 236}, {82, 192}, {121, 235}, {52,
167}, {57, 170}, {82, 198}, {51, 166}, {119, 225}, {50, 165}, {84, 195}, {80,
200}, {31, 134}, {113, 232}, {91, 193}, {115, 233}, {127, 227}, {81, 204}, {46,
176}, {63, 161}, {62, 160}, {55, 169}, {54, 168}, {47, 177}, {83, 205}, {117,
234}, {73, 233}, {100, 196}, {28, 189}, {13, 175}, {56, 154}, {96, 194}, {97,
195}, {60, 159}, {107, 200}, {111, 204}, {108, 201}, {87, 240}, {123, 220}, {3,
171}, {61, 149}, {29, 181}, {114, 222}, {120, 212}, {1, 172}, {125, 208}, {70,
235}, {48, 157}, {104, 197}, {106, 199}, {102, 200}, {105, 198}, {11, 187},
{114, 194}, {88, 235}, {124, 207}, {13, 184}, {118, 195}, {10, 188}, {120, 206},
{121, 207}, {39, 159}, {92, 228}, {108, 212}, {118, 206}, {14, 183}, {57, 128},
{115, 202}, {4, 190}, {86, 236}, {119, 205}, {100, 223}, {112, 204}, {40, 149},
{84, 234}, {94, 224}, {117, 203}, {49, 142}, {123, 186}, {35, 225}, {30, 221},
{68, 128}, {69, 129}, {92, 152}, {28, 217}, {75, 140}, {79, 136}, {31, 214},
{68, 141}, {37, 236}, {74, 131}, {76, 133}, {78, 135}, {113, 184}, {30, 212},
{66, 137}, {73, 130}, {77, 134}, {65, 140}, {12, 194}, {75, 132}, {91, 139},
{65, 144}, {72, 153}, {93, 140}, {118, 164}, {66, 145}, {77, 158}, {12, 216},
{79, 155}, {116, 160}, {84, 129}, {93, 136}, {110, 187}, {81, 137}, {83, 138},
{122, 163}, {89, 130}, {95, 132}, {98, 190}, {75, 150}, {99, 189}, {116, 170},
{84, 139}, {100, 187}, {80, 176}, {81, 177}, {82, 178}, {83, 179}, {92, 188},
{85, 180}, {97, 130}, {86, 178}, {75, 174}, {76, 170}, {119, 144}, {88, 176},
{125, 151}, {83, 191}, {90, 182}, {68, 169}, {114, 156}, {64, 175}, {80, 191},
{85, 186}, {77, 189}, {78, 190}, {121, 138}, {76, 184}, {90, 174}, {109, 153},
{74, 188}, {98, 148}, {105, 158}, {107, 156}, {106, 146}, {124, 132}, {122,
131}, {33, 218}, {79, 180}, {111, 147}, {115, 142}, {32, 223}, {33, 222}
}>;
(II) A more general form is to represent the graph as the orbit of {72, 74}
under the group generated by the following permutations:
a: (2, 5)(4, 11)(6, 17)(7, 9)(8, 23)(10, 13)(12, 31)(14, 36)(15, 39)(18, 46)(19,
26)(20, 52)(21, 41)(24, 60)(25, 27)(28, 33)(29, 38)(30, 71)(32, 76)(34, 80)(35,
72)(37, 86)(40, 93)(42, 55)(43, 101)(44, 105)(45, 92)(47, 111)(48, 65)(49,
115)(50, 107)(51, 98)(54, 66)(56, 95)(57, 100)(58, 103)(59, 78)(61, 133)(62,
67)(63, 68)(64, 74)(69, 82)(70, 88)(73, 83)(75, 146)(77, 152)(79, 147)(84,
143)(85, 159)(87, 164)(89, 167)(90, 160)(91, 171)(94, 176)(96, 181)(97, 172)(99,
183)(102, 184)(104, 191)(106, 140)(108, 118)(110, 198)(112, 202)(113, 200)(114,
148)(116, 182)(117, 137)(119, 196)(121, 135)(122, 208)(124, 141)(125, 131)(126,
190)(127, 178)(128, 187)(129, 192)(130, 138)(132, 154)(134, 216)(136, 149)(139,
151)(144, 157)(145, 168)(153, 225)(156, 165)(158, 162)(161, 169)(163, 228)(166,
229)(170, 223)(173, 227)(174, 230)(175, 188)(177, 204)(179, 233)(180, 226)(185,
224)(186, 220)(189, 218)(193, 205)(194, 214)(195, 201)(197, 215)(199, 213)(203,
221)(206, 212)(207, 210)(209, 219)(211, 234)(217, 222)(237, 240)(238, 239) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 172)(4, 206)(5, 97)(6, 138)(7, 91)(8, 118)(9, 171)(10, 153)(11, 212)(12,
114)(13, 225)(14, 201)(15, 41)(16, 120)(17, 130)(18, 167)(19, 139)(20, 164)(21,
39)(22, 109)(23, 108)(24, 156)(25, 119)(26, 151)(27, 196)(28, 77)(29, 205)(30,
126)(31, 148)(32, 68)(33, 152)(34, 133)(35, 175)(36, 195)(37, 121)(38, 193)(40,
83)(42, 55)(43, 51)(44, 160)(45, 58)(46, 89)(47, 234)(48, 145)(49, 199)(50,
159)(52, 87)(53, 231)(54, 144)(56, 143)(57, 100)(60, 165)(61, 80)(62, 162)(63,
76)(65, 168)(66, 157)(67, 158)(69, 124)(70, 125)(71, 190)(72, 188)(73, 93)(75,
209)(79, 197)(82, 141)(84, 95)(85, 107)(86, 135)(88, 131)(90, 105)(92, 103)(94,
208)(96, 237)(98, 101)(99, 238)(102, 169)(104, 136)(106, 179)(110, 116)(111,
211)(112, 221)(113, 220)(115, 213)(117, 177)(122, 176)(123, 232)(127, 207)(128,
223)(129, 132)(134, 217)(137, 204)(140, 233)(146, 219)(147, 215)(149, 191)(150,
155)(154, 192)(161, 184)(163, 185)(166, 173)(170, 187)(174, 230)(178, 210)(180,
226)(181, 240)(182, 198)(183, 239)(186, 200)(202, 203)(216, 222)(224, 228)(227,
229)(235, 236)
c: (1, 2, 14, 23, 11, 16, 4, 8, 36, 5)(3, 9, 29, 25, 13, 22, 10, 27, 38, 7)(6,
183, 55, 126, 92, 128, 20, 95, 39, 97)(12, 176, 83, 174, 146, 233, 34, 134, 71,
212)(15, 56, 52, 187, 45, 190, 42, 99, 17, 172)(18, 60, 118, 59, 152, 68, 49,
132, 105, 130)(19, 171, 21, 40, 54, 184, 51, 188, 57, 96)(24, 46, 138, 44, 154,
115, 63, 77, 78, 108)(26, 181, 100, 175, 98, 102, 66, 93, 41, 91)(28, 178, 143,
180, 147, 234, 69, 222, 72, 225)(30, 216, 80, 179, 75, 230, 73, 94, 31, 206)(32,
137, 136, 107, 139, 65, 62, 196, 64, 148)(33, 153, 35, 217, 82, 211, 79, 226,
84, 127)(37, 218, 169, 112, 228, 198, 89, 47, 159, 195)(43, 185, 191, 219, 150,
209, 104, 224, 101, 120)(48, 151, 50, 149, 117, 76, 114, 74, 119, 67)(53, 164,
121, 162, 141, 142, 124, 158, 135, 87)(58, 173, 192, 215, 155, 197, 129, 227,
103, 109)(61, 81, 133, 156, 131, 144, 123, 157, 125, 165)(70, 214, 223, 221,
229, 200, 145, 140, 160, 193)(85, 111, 167, 110, 163, 202, 161, 189, 86,
201)(88, 205, 90, 106, 168, 113, 166, 203, 170, 194)(116, 237, 235, 240, 182,
199, 207, 232, 210, 213)(122, 177, 220, 238, 236, 239, 186, 204, 208, 231)
C4[ 240, 94 ]
240
-1 2 5 172 97
-2 1 14 15 6
-3 91 171 7 9
-4 190 16 128 8
-5 1 36 17 39
-6 2 37 18 40
-7 3 38 19 41
-8 36 4 20 42
-9 3 26 29 21
-10 22 188 102 27
-11 187 23 16 126
-12 24 194 216 43
-13 22 25 184 175
-14 23 56 2 183
-15 44 2 91 85
-16 11 45 4 92
-17 46 5 93 86
-18 47 6 94 87
-19 88 48 7 95
-20 89 49 8 96
-21 90 50 9 97
-22 13 51 10 98
-23 11 55 14 52
-24 99 12 85 53
-25 100 13 29 54
-26 56 70 9 65
-27 66 57 38 10
-28 67 189 58 217
-29 25 181 40 9
-30 221 212 59 43
-31 101 134 60 214
-32 102 223 82 61
-33 222 103 62 218
-34 113 104 94 63
-35 112 58 225 64
-36 99 5 95 8
-37 59 236 6 127
-38 27 93 7 96
-39 5 159 105 171
-40 6 149 29 106
-41 160 7 172 107
-42 102 161 8 108
-43 12 30 173 109
-44 110 15 162 174
-45 77 16 163 175
-46 176 111 17 164
-47 177 79 18 95
-48 178 157 106 19
-49 112 179 20 142
-50 165 113 180 21
-51 22 166 114 126
-52 23 167 115 181
-53 24 60 116 182
-54 25 168 117 183
-55 23 169 118 184
-56 154 111 14 26
-57 27 170 128 119
-58 35 28 185 120
-59 121 37 126 30
-60 159 183 31 53
-61 122 149 32 186
-62 33 123 181 160
-63 187 34 124 161
-64 35 70 125 175
-65 144 26 127 140
-66 99 145 27 137
-67 90 123 28 96
-68 80 169 128 141
-69 110 127 129 76
-70 26 235 94 64
-71 78 101 203 206
-72 103 202 74 153
-73 233 104 193 130
-74 88 188 72 131
-75 132 150 140 174
-76 133 69 170 184
-77 45 134 189 158
-78 135 190 71 86
-79 155 47 136 180
-80 176 68 200 191
-81 177 137 204 117
-82 198 178 192 32
-83 179 191 138 205
-84 234 139 129 195
-85 24 15 180 186
-86 78 178 236 17
-87 213 18 108 240
-88 176 235 19 74
-89 122 211 20 130
-90 67 182 174 21
-91 3 15 193 139
-92 188 16 228 152
-93 136 38 17 140
-94 34 70 224 18
-95 132 36 47 19
-96 67 38 194 20
-97 1 195 130 21
-98 22 190 148 229
-99 66 24 189 36
-100 187 25 223 196
-101 71 227 31 109
-102 200 42 10 32
-103 33 224 72 120
-104 34 73 227 197
-105 198 158 39 230
-106 199 146 48 40
-107 156 200 226 41
-108 201 212 42 87
-109 101 225 43 153
-110 44 187 231 69
-111 56 46 147 204
-112 35 49 126 204
-113 34 232 50 184
-114 156 222 51 194
-115 233 202 52 142
-116 124 170 160 53
-117 234 81 203 54
-118 55 195 206 164
-119 144 57 225 205
-120 58 212 103 206
-121 59 235 138 207
-122 89 61 163 131
-123 220 67 62 186
-124 132 116 63 207
-125 236 151 64 208
-126 11 112 59 51
-127 69 37 227 65
-128 198 57 68 4
-129 209 69 224 84
-130 89 135 73 97
-131 122 236 139 74
-132 124 95 228 75
-133 220 136 76 208
-134 77 166 224 31
-135 78 210 235 130
-136 133 79 93 229
-137 66 221 211 81
-138 121 167 83 172
-139 145 91 84 131
-140 213 93 75 65
-141 154 210 68 182
-142 199 213 49 115
-143 211 201 192 151
-144 177 239 119 65
-145 66 210 179 139
-146 154 106 150 230
-147 111 155 149 226
-148 165 214 217 98
-149 166 147 61 40
-150 146 215 75 197
-151 143 168 125 171
-152 92 216 162 218
-153 169 72 196 109
-154 56 146 141 163
-155 209 79 147 219
-156 231 114 238 107
-157 48 204 238 196
-158 77 232 105 237
-159 220 60 39 226
-160 116 62 41 230
-161 220 225 63 42
-162 44 232 152 240
-163 154 45 122 222
-164 199 46 237 118
-165 231 148 50 239
-166 210 134 149 51
-167 234 138 52 208
-168 233 151 207 54
-169 55 68 153 186
-170 57 212 116 76
-171 3 39 205 151
-172 1 201 138 41
-173 178 191 217 43
-174 44 90 75 219
-175 45 221 13 64
-176 88 46 80 185
-177 144 47 81 202
-178 48 82 173 86
-179 145 49 83 219
-180 79 50 215 85
-181 214 29 62 52
-182 90 223 53 141
-183 14 60 218 54
-184 55 13 113 76
-185 176 58 192 216
-186 123 169 61 85
-187 11 110 100 63
-188 92 203 74 10
-189 77 99 28 238
-190 78 4 202 98
-191 80 83 215 173
-192 143 82 185 219
-193 91 237 73 196
-194 12 114 237 96
-195 84 238 118 97
-196 100 157 193 153
-197 234 104 226 150
-198 231 82 105 128
-199 221 106 142 164
-200 232 80 102 107
-201 143 172 239 108
-202 177 190 115 72
-203 188 213 71 117
-204 111 112 157 81
-205 83 171 119 240
-206 223 71 118 120
-207 121 124 168 229
-208 133 167 125 228
-209 155 233 129 230
-210 166 145 135 141
-211 143 89 137 215
-212 170 30 108 120
-213 203 140 87 142
-214 148 181 31 240
-215 211 180 191 150
-216 12 152 185 229
-217 148 28 173 228
-218 33 183 239 152
-219 155 179 192 174
-220 133 123 159 161
-221 199 137 30 175
-222 33 114 227 163
-223 100 182 206 32
-224 134 103 94 129
-225 35 161 119 109
-226 147 159 107 197
-227 101 222 104 127
-228 132 92 217 208
-229 136 216 207 98
-230 209 146 105 160
-231 110 165 198 156
-232 200 113 158 162
-233 209 168 115 73
-234 167 84 117 197
-235 88 121 135 70
-236 37 125 86 131
-237 158 193 194 164
-238 156 189 157 195
-239 165 144 201 218
-240 214 205 162 87
0