C4graphGraph forms for C4 [ 240, 96 ] = UG(ATD[240,158])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 96 ] = UG(ATD[240,158]).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {108, 111}, {112, 116}, {192, 196}, {3, 6}, {192, 197}, {74, 76}, {112, 118}, {1, 6}, {217, 222}, {74, 77}, {1, 11}, {228, 239}, {1, 13}, {160, 172}, {146, 158}, {81, 93}, {130, 143}, {226, 239}, {147, 158}, {49, 63}, {160, 174}, {134, 136}, {82, 93}, {134, 137}, {130, 141}, {110, 126}, {192, 208}, {1, 16}, {11, 26}, {2, 16}, {6, 21}, {73, 90}, {65, 85}, {175, 187}, {64, 85}, {105, 127}, {173, 187}, {11, 28}, {7, 31}, {168, 176}, {131, 155}, {6, 31}, {168, 177}, {41, 48}, {42, 48}, {108, 112}, {8, 21}, {142, 147}, {71, 90}, {133, 155}, {141, 147}, {26, 58}, {26, 56}, {194, 230}, {145, 180}, {202, 239}, {195, 230}, {154, 191}, {94, 120}, {202, 237}, {12, 36}, {193, 233}, {148, 188}, {75, 99}, {94, 118}, {75, 97}, {193, 235}, {140, 166}, {139, 161}, {140, 167}, {159, 180}, {17, 61}, {16, 61}, {159, 178}, {154, 183}, {140, 161}, {146, 188}, {11, 36}, {152, 183}, {18, 34}, {74, 122}, {72, 122}, {137, 186}, {92, 104}, {19, 38}, {137, 188}, {70, 115}, {20, 34}, {69, 115}, {94, 104}, {13, 53}, {16, 41}, {217, 224}, {23, 46}, {18, 41}, {143, 180}, {21, 46}, {19, 40}, {152, 164}, {128, 189}, {208, 237}, {152, 165}, {148, 169}, {13, 51}, {130, 189}, {210, 237}, {150, 169}, {9, 73}, {50, 114}, {23, 87}, {23, 86}, {132, 197}, {9, 75}, {142, 204}, {49, 114}, {132, 199}, {62, 122}, {163, 231}, {142, 202}, {38, 96}, {38, 97}, {62, 121}, {8, 64}, {158, 214}, {61, 117}, {15, 71}, {56, 113}, {139, 194}, {10, 64}, {13, 71}, {62, 117}, {163, 232}, {137, 194}, {149, 217}, {144, 221}, {149, 216}, {31, 81}, {144, 223}, {45, 125}, {46, 126}, {45, 124}, {133, 212}, {47, 126}, {22, 66}, {190, 234}, {32, 116}, {26, 76}, {188, 234}, {135, 209}, {133, 211}, {55, 97}, {21, 66}, {182, 225}, {134, 209}, {56, 111}, {54, 97}, {27, 76}, {51, 106}, {184, 225}, {156, 197}, {185, 227}, {45, 118}, {158, 197}, {154, 193}, {37, 121}, {185, 229}, {52, 104}, {36, 121}, {52, 105}, {43, 118}, {51, 108}, {23, 119}, {3, 98}, {167, 198}, {131, 226}, {3, 96}, {164, 199}, {24, 123}, {33, 69}, {59, 95}, {24, 125}, {63, 90}, {59, 94}, {35, 69}, {132, 226}, {63, 88}, {39, 78}, {31, 116}, {48, 91}, {164, 200}, {41, 68}, {25, 119}, {187, 213}, {43, 68}, {191, 208}, {186, 213}, {169, 198}, {33, 81}, {172, 220}, {165, 213}, {49, 65}, {38, 86}, {43, 90}, {163, 210}, {36, 86}, {165, 215}, {43, 89}, {46, 91}, {160, 214}, {33, 86}, {172, 219}, {165, 210}, {39, 80}, {5, 124}, {181, 204}, {33, 88}, {28, 101}, {52, 78}, {157, 231}, {28, 103}, {183, 204}, {156, 231}, {51, 78}, {170, 215}, {45, 83}, {3, 124}, {168, 215}, {44, 83}, {100, 228}, {4, 133}, {50, 179}, {47, 174}, {79, 206}, {105, 232}, {29, 159}, {4, 135}, {48, 179}, {80, 212}, {95, 219}, {109, 233}, {18, 151}, {87, 210}, {80, 214}, {87, 209}, {89, 223}, {95, 217}, {98, 228}, {110, 233}, {55, 191}, {87, 223}, {57, 176}, {40, 162}, {55, 189}, {53, 191}, {18, 153}, {57, 178}, {84, 223}, {40, 164}, {55, 187}, {100, 232}, {70, 203}, {100, 234}, {70, 201}, {103, 232}, {8, 152}, {39, 182}, {58, 171}, {37, 182}, {53, 166}, {32, 181}, {44, 185}, {25, 143}, {32, 182}, {24, 143}, {58, 173}, {82, 202}, {64, 218}, {44, 183}, {82, 201}, {30, 131}, {67, 222}, {53, 168}, {67, 221}, {80, 206}, {8, 151}, {49, 174}, {28, 131}, {25, 185}, {30, 190}, {104, 200}, {2, 163}, {124, 221}, {25, 184}, {2, 161}, {127, 220}, {30, 189}, {77, 233}, {99, 198}, {127, 218}, {74, 236}, {75, 236}, {122, 221}, {99, 196}, {54, 159}, {110, 199}, {113, 216}, {77, 231}, {54, 157}, {108, 199}, {113, 218}, {79, 227}, {77, 227}, {102, 200}, {65, 238}, {56, 136}, {121, 201}, {61, 141}, {27, 170}, {65, 240}, {57, 136}, {54, 135}, {27, 169}, {125, 207}, {123, 201}, {63, 141}, {35, 145}, {34, 145}, {125, 206}, {52, 135}, {120, 203}, {98, 214}, {84, 225}, {98, 215}, {120, 205}, {107, 211}, {2, 184}, {4, 184}, {30, 162}, {29, 160}, {60, 129}, {89, 228}, {60, 130}, {109, 211}, {29, 162}, {89, 230}, {15, 207}, {84, 148}, {10, 203}, {14, 207}, {85, 148}, {93, 156}, {106, 171}, {9, 203}, {88, 154}, {24, 219}, {79, 140}, {88, 155}, {5, 193}, {117, 177}, {20, 209}, {68, 129}, {79, 138}, {116, 177}, {5, 195}, {42, 236}, {14, 200}, {106, 172}, {42, 237}, {70, 129}, {91, 156}, {14, 198}, {102, 174}, {7, 206}, {102, 175}, {72, 132}, {92, 144}, {114, 190}, {19, 222}, {35, 238}, {22, 219}, {92, 145}, {72, 134}, {112, 190}, {17, 222}, {35, 236}, {59, 235}, {66, 146}, {81, 128}, {50, 224}, {57, 235}, {50, 225}, {83, 128}, {103, 179}, {126, 170}, {115, 167}, {114, 167}, {127, 170}, {68, 146}, {103, 177}, {7, 208}, {39, 240}, {27, 195}, {40, 240}, {107, 179}, {117, 173}, {12, 213}, {20, 205}, {78, 151}, {119, 173}, {20, 207}, {76, 151}, {19, 205}, {29, 195}, {12, 211}, {107, 180}, {107, 139}, {123, 155}, {83, 178}, {91, 186}, {106, 139}, {111, 142}, {119, 150}, {47, 205}, {123, 153}, {47, 204}, {15, 235}, {62, 218}, {15, 234}, {37, 192}, {22, 240}, {92, 186}, {7, 224}, {37, 194}, {85, 178}, {60, 212}, {73, 161}, {96, 136}, {105, 129}, {9, 224}, {12, 229}, {4, 238}, {69, 175}, {96, 138}, {5, 238}, {73, 162}, {14, 229}, {10, 230}, {67, 175}, {102, 138}, {113, 157}, {110, 128}, {115, 157}, {120, 150}, {10, 229}, {59, 212}, {101, 138}, {101, 149}, {17, 227}, {71, 181}, {66, 176}, {42, 216}, {17, 226}, {67, 176}, {44, 216}, {101, 147}, {60, 196}, {109, 149}, {22, 239}, {82, 171}, {95, 166}, {99, 153}, {93, 166}, {109, 150}, {32, 220}, {72, 181}, {100, 153}, {34, 220}, {58, 196}, {84, 171}, {111, 144} }>;

(II) A more general form is to represent the graph as the orbit of {108, 111} under the group generated by the following permutations:

a: (1, 2)(3, 4)(6, 184)(7, 182)(8, 185)(9, 181)(10, 183)(11, 163)(12, 165)(13, 161)(14, 164)(15, 162)(17, 18)(19, 20)(21, 25)(22, 24)(26, 231)(27, 233)(28, 232)(29, 235)(30, 234)(31, 225)(32, 224)(33, 223)(34, 222)(35, 221)(36, 210)(37, 208)(38, 209)(39, 206)(40, 207)(41, 61)(42, 62)(43, 63)(44, 64)(45, 65)(46, 119)(47, 120)(48, 117)(49, 118)(50, 116)(51, 140)(52, 138)(53, 139)(54, 136)(55, 137)(56, 157)(57, 159)(58, 156)(59, 160)(60, 158)(66, 143)(67, 145)(68, 141)(69, 144)(70, 142)(71, 73)(72, 75)(76, 77)(78, 79)(81, 84)(83, 85)(86, 87)(88, 89)(91, 173)(92, 175)(93, 171)(94, 174)(95, 172)(96, 135)(97, 134)(98, 133)(99, 132)(100, 131)(101, 105)(102, 104)(106, 166)(107, 168)(108, 167)(109, 170)(110, 169)(111, 115)(112, 114)(121, 237)(122, 236)(123, 239)(124, 238)(125, 240)(126, 150)(127, 149)(128, 148)(129, 147)(130, 146)(151, 227)(152, 229)(153, 226)(154, 230)(155, 228)(176, 180)(177, 179)(186, 187)(188, 189)(191, 194)(193, 195)(196, 197)(198, 199)(201, 202)(203, 204)(211, 215)(212, 214)(216, 218)(217, 220)
b: (1, 6, 21, 46, 91, 156, 197, 132, 72, 122, 62, 117, 177, 168, 215, 165, 210, 237, 202, 142, 111, 56, 26, 11)(2, 7, 22, 47, 92, 157, 196, 131, 71, 124, 64, 119, 179, 166, 214, 164, 209, 236, 201, 141, 112, 57, 27, 12)(3, 8, 23, 48, 93, 158, 199, 134, 74, 121, 61, 116, 176, 170, 213, 163, 208, 239, 204, 144, 113, 58, 28, 13)(4, 9, 24, 49, 94, 159, 198, 133, 73, 125, 65, 120, 180, 167, 212, 162, 207, 238, 203, 143, 114, 59, 29, 14)(5, 10, 25, 50, 95, 160, 200, 135, 75, 123, 63, 118, 178, 169, 211, 161, 206, 240, 205, 145, 115, 60, 30, 15)(16, 31, 66, 126, 186, 231, 192, 226, 181, 221, 218, 173, 103, 53, 98, 152, 87, 42, 82, 147, 108, 136, 76, 36)(17, 32, 67, 127, 187, 232, 191, 228, 183, 223, 216, 171, 101, 51, 96, 151, 86, 41, 81, 146, 110, 137, 77, 37)(18, 33, 68, 128, 188, 233, 194, 227, 182, 222, 220, 175, 105, 55, 100, 154, 89, 44, 84, 149, 106, 138, 78, 38)(19, 34, 69, 129, 189, 234, 193, 230, 185, 225, 217, 172, 102, 52, 97, 153, 88, 43, 83, 148, 109, 139, 79, 39)(20, 35, 70, 130, 190, 235, 195, 229, 184, 224, 219, 174, 104, 54, 99, 155, 90, 45, 85, 150, 107, 140, 80, 40)
c: (2, 71)(3, 36)(4, 207)(5, 229)(6, 11)(7, 131)(8, 76)(9, 162)(10, 195)(12, 124)(13, 16)(14, 238)(15, 184)(17, 191)(18, 78)(19, 97)(20, 135)(21, 26)(22, 196)(23, 136)(24, 212)(25, 235)(27, 64)(28, 31)(29, 203)(30, 224)(32, 232)(33, 138)(34, 52)(35, 200)(37, 228)(39, 153)(40, 75)(41, 51)(42, 199)(43, 139)(44, 233)(45, 211)(46, 56)(47, 157)(48, 108)(49, 167)(50, 190)(53, 61)(54, 205)(55, 222)(57, 119)(58, 66)(59, 143)(60, 219)(62, 215)(63, 140)(65, 198)(67, 187)(68, 106)(69, 102)(70, 160)(72, 210)(74, 152)(77, 183)(79, 88)(80, 123)(81, 101)(82, 158)(83, 109)(84, 188)(85, 169)(86, 96)(87, 134)(89, 194)(90, 161)(91, 111)(93, 147)(94, 180)(95, 130)(98, 121)(99, 240)(100, 182)(103, 116)(104, 145)(105, 220)(107, 118)(110, 216)(112, 179)(113, 126)(115, 174)(117, 168)(120, 159)(122, 165)(125, 133)(128, 149)(129, 172)(132, 237)(137, 223)(141, 166)(142, 156)(144, 186)(146, 171)(150, 178)(154, 227)(155, 206)(163, 181)(164, 236)(170, 218)(173, 176)(185, 193)(189, 217)(192, 239)(197, 202)(201, 214)(204, 231)(208, 226)(213, 221)(225, 234)
d: (2, 3)(4, 5)(6, 16)(7, 17)(8, 18)(9, 19)(10, 20)(11, 13)(12, 15)(21, 41)(22, 42)(23, 43)(24, 44)(25, 45)(26, 51)(27, 52)(28, 53)(29, 54)(30, 55)(31, 61)(32, 62)(33, 63)(34, 64)(35, 65)(36, 71)(37, 72)(38, 73)(39, 74)(40, 75)(46, 68)(47, 70)(48, 66)(49, 69)(50, 67)(56, 106)(57, 107)(58, 108)(59, 109)(60, 110)(76, 78)(77, 80)(81, 141)(82, 142)(83, 143)(84, 144)(85, 145)(86, 90)(87, 89)(91, 146)(92, 148)(93, 147)(94, 150)(95, 149)(96, 161)(97, 162)(98, 163)(99, 164)(100, 165)(101, 166)(102, 167)(103, 168)(104, 169)(105, 170)(111, 171)(112, 173)(113, 172)(114, 175)(115, 174)(116, 117)(118, 119)(121, 181)(122, 182)(123, 183)(124, 184)(125, 185)(126, 129)(128, 130)(131, 191)(132, 192)(133, 193)(134, 194)(135, 195)(136, 139)(138, 140)(152, 153)(154, 155)(156, 158)(157, 160)(176, 179)(178, 180)(186, 188)(187, 190)(196, 199)(198, 200)(201, 204)(203, 205)(206, 227)(207, 229)(208, 226)(209, 230)(210, 228)(211, 235)(212, 233)(213, 234)(214, 231)(215, 232)(216, 219)(218, 220)(221, 225)(222, 224)(236, 240)(237, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 96 ]
240
-1 11 13 16 6
-2 16 161 184 163
-3 124 6 96 98
-4 133 135 238 184
-5 124 193 238 195
-6 1 3 31 21
-7 224 206 31 208
-8 151 64 152 21
-9 224 203 73 75
-10 203 64 229 230
-11 1 36 26 28
-12 211 36 213 229
-13 1 71 51 53
-14 198 200 207 229
-15 234 235 71 207
-16 1 2 61 41
-17 222 61 226 227
-18 34 41 151 153
-19 222 38 40 205
-20 209 34 205 207
-21 66 46 6 8
-22 66 239 240 219
-23 46 86 119 87
-24 143 123 125 219
-25 143 184 119 185
-26 11 56 58 76
-27 169 170 195 76
-28 11 101 103 131
-29 159 160 162 195
-30 189 190 162 131
-31 81 6 116 7
-32 220 181 116 182
-33 88 69 81 86
-34 220 145 18 20
-35 145 69 236 238
-36 11 121 12 86
-37 121 192 182 194
-38 19 96 86 97
-39 78 80 182 240
-40 19 162 240 164
-41 68 48 16 18
-42 48 236 237 216
-43 89 68 90 118
-44 83 183 216 185
-45 124 125 83 118
-46 23 91 126 21
-47 126 204 205 174
-48 91 179 41 42
-49 114 63 174 65
-50 179 114 224 225
-51 78 13 106 108
-52 78 135 104 105
-53 166 13 168 191
-54 135 157 159 97
-55 187 189 191 97
-56 111 113 26 136
-57 176 178 136 235
-58 26 171 173 196
-59 212 235 94 95
-60 212 129 130 196
-61 16 17 117 141
-62 121 122 117 218
-63 88 90 49 141
-64 8 85 218 10
-65 49 238 85 240
-66 22 176 146 21
-67 176 221 222 175
-68 146 41 129 43
-69 33 35 115 175
-70 201 115 203 129
-71 13 90 15 181
-72 132 122 134 181
-73 90 161 162 9
-74 77 122 236 76
-75 99 236 9 97
-76 26 27 74 151
-77 231 233 227 74
-78 39 51 52 151
-79 138 227 140 206
-80 212 214 39 206
-81 33 93 128 31
-82 201 202 93 171
-83 44 45 178 128
-84 223 148 225 171
-85 178 148 64 65
-86 33 23 36 38
-87 209 23 210 223
-88 33 154 155 63
-89 223 228 43 230
-90 71 73 63 43
-91 46 156 48 186
-92 144 145 104 186
-93 166 156 81 82
-94 59 104 118 120
-95 166 59 217 219
-96 3 136 38 138
-97 55 38 75 54
-98 3 214 215 228
-99 198 75 196 153
-100 232 234 228 153
-101 147 28 138 149
-102 200 138 174 175
-103 177 232 179 28
-104 200 92 94 52
-105 232 127 52 129
-106 171 51 139 172
-107 211 179 180 139
-108 111 199 112 51
-109 211 233 149 150
-110 199 233 126 128
-111 56 144 108 142
-112 190 116 118 108
-113 56 157 216 218
-114 167 190 49 50
-115 167 69 157 70
-116 177 112 31 32
-117 177 61 62 173
-118 45 112 94 43
-119 23 25 150 173
-120 203 94 150 205
-121 36 201 37 62
-122 221 72 62 74
-123 155 24 201 153
-124 45 221 3 5
-125 45 24 206 207
-126 110 46 47 170
-127 220 170 105 218
-128 110 189 81 83
-129 68 70 60 105
-130 143 189 60 141
-131 155 28 226 30
-132 199 72 226 197
-133 155 211 212 4
-134 209 136 137 72
-135 209 4 52 54
-136 56 57 134 96
-137 188 134 194 186
-138 79 101 102 96
-139 106 161 194 107
-140 166 79 167 161
-141 147 61 63 130
-142 111 147 202 204
-143 24 25 180 130
-144 111 221 223 92
-145 34 35 92 180
-146 66 188 68 158
-147 101 158 141 142
-148 188 169 84 85
-149 101 216 217 109
-150 169 119 109 120
-151 78 18 8 76
-152 165 183 8 164
-153 99 100 123 18
-154 88 191 193 183
-155 88 133 123 131
-156 231 91 93 197
-157 231 113 115 54
-158 146 147 214 197
-159 178 180 29 54
-160 214 29 172 174
-161 2 73 139 140
-162 29 40 73 30
-163 231 210 232 2
-164 199 200 40 152
-165 210 213 215 152
-166 93 95 140 53
-167 198 114 115 140
-168 176 177 215 53
-169 198 27 148 150
-170 27 126 127 215
-171 58 82 84 106
-172 220 160 106 219
-173 187 58 117 119
-174 47 102 49 160
-175 187 67 69 102
-176 66 67 57 168
-177 168 103 116 117
-178 57 159 83 85
-179 48 103 50 107
-180 143 145 159 107
-181 71 72 204 32
-182 37 225 39 32
-183 44 154 204 152
-184 2 25 4 225
-185 44 25 227 229
-186 91 92 213 137
-187 55 213 173 175
-188 146 234 137 148
-189 55 128 30 130
-190 112 234 114 30
-191 55 154 53 208
-192 37 196 197 208
-193 154 233 235 5
-194 37 137 139 230
-195 5 27 29 230
-196 99 58 60 192
-197 132 156 158 192
-198 99 167 14 169
-199 110 132 108 164
-200 14 102 104 164
-201 121 123 70 82
-202 82 237 239 142
-203 70 9 10 120
-204 47 181 183 142
-205 47 19 20 120
-206 79 80 125 7
-207 14 15 125 20
-208 191 192 237 7
-209 134 135 20 87
-210 165 237 163 87
-211 12 133 107 109
-212 133 80 59 60
-213 165 187 12 186
-214 80 158 160 98
-215 165 168 170 98
-216 44 113 149 42
-217 222 224 149 95
-218 113 127 62 64
-219 22 24 95 172
-220 34 127 172 32
-221 67 122 144 124
-222 67 17 19 217
-223 89 144 84 87
-224 50 7 217 9
-225 50 182 84 184
-226 132 17 239 131
-227 77 79 17 185
-228 89 100 239 98
-229 12 14 185 10
-230 89 194 195 10
-231 77 156 157 163
-232 100 103 105 163
-233 77 110 193 109
-234 100 188 190 15
-235 57 15 59 193
-236 35 74 42 75
-237 210 202 42 208
-238 35 4 5 65
-239 22 202 226 228
-240 22 39 40 65
0

**************