[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 98 ] =
UG(ATD[240,160]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {18, 19}, {236, 237}, {156, 157}, {148, 149}, {16, 18}, {28, 30},
{80, 82}, {120, 122}, {1, 2}, {232, 235}, {229, 230}, {65, 66}, {1, 5}, {210,
214}, {209, 213}, {163, 167}, {131, 135}, {51, 55}, {50, 54}, {49, 53}, {3, 7},
{2, 6}, {96, 100}, {128, 133}, {163, 166}, {145, 151}, {229, 237}, {22, 31},
{192, 201}, {119, 126}, {118, 125}, {210, 217}, {194, 201}, {4, 8}, {165, 169},
{164, 168}, {2, 15}, {176, 189}, {147, 158}, {55, 58}, {53, 56}, {103, 105},
{178, 188}, {54, 57}, {109, 125}, {165, 180}, {3, 16}, {64, 83}, {11, 24}, {7,
20}, {4, 17}, {164, 177}, {72, 93}, {14, 27}, {12, 25}, {6, 19}, {5, 18}, {161,
182}, {67, 84}, {13, 26}, {32, 56}, {163, 187}, {110, 118}, {175, 181}, {202,
208}, {165, 185}, {8, 21}, {70, 91}, {10, 23}, {79, 81}, {196, 218}, {162, 188},
{9, 22}, {144, 176}, {129, 160}, {202, 235}, {155, 186}, {152, 186}, {23, 52},
{24, 60}, {203, 239}, {27, 63}, {26, 62}, {25, 61}, {79, 106}, {198, 227}, {16,
54}, {68, 98}, {17, 55}, {89, 127}, {92, 122}, {8, 47}, {159, 184}, {141, 170},
{72, 111}, {198, 238}, {216, 240}, {5, 44}, {151, 190}, {65, 104}, {7, 46}, {6,
45}, {137, 162}, {19, 56}, {74, 97}, {11, 39}, {220, 240}, {204, 224}, {23, 59},
{20, 57}, {153, 180}, {148, 185}, {75, 102}, {76, 97}, {13, 34}, {21, 58}, {20,
59}, {143, 190}, {222, 236}, {66, 113}, {223, 236}, {218, 233}, {69, 113}, {88,
108}, {6, 48}, {86, 96}, {67, 123}, {68, 124}, {75, 115}, {9, 48}, {142, 183},
{11, 50}, {84, 109}, {14, 52}, {15, 53}, {78, 116}, {10, 49}, {133, 185}, {146,
174}, {26, 39}, {11, 53}, {29, 35}, {12, 51}, {41, 104}, {160, 225}, {35, 97},
{170, 232}, {154, 216}, {142, 205}, {167, 228}, {151, 212}, {10, 78}, {36, 98},
{161, 231}, {153, 223}, {47, 104}, {149, 221}, {150, 222}, {132, 205}, {169,
227}, {146, 217}, {135, 203}, {174, 226}, {173, 225}, {174, 227}, {4, 74}, {172,
226}, {144, 222}, {22, 88}, {174, 225}, {175, 224}, {44, 124}, {189, 237}, {184,
232}, {142, 222}, {42, 123}, {141, 220}, {140, 221}, {46, 127}, {44, 125}, {45,
126}, {186, 233}, {181, 230}, {146, 193}, {144, 195}, {136, 219}, {148, 192},
{176, 228}, {9, 92}, {12, 90}, {179, 229}, {38, 112}, {36, 114}, {43, 124},
{191, 232}, {139, 220}, {139, 211}, {130, 219}, {156, 197}, {34, 120}, {189,
231}, {176, 234}, {36, 127}, {37, 121}, {134, 218}, {38, 122}, {29, 64}, {183,
234}, {182, 235}, {179, 238}, {35, 126}, {31, 66}, {32, 126}, {30, 65}, {52,
107}, {34, 125}, {20, 116}, {191, 223}, {183, 215}, {137, 233}, {21, 117}, {40,
74}, {163, 193}, {41, 75}, {32, 67}, {62, 93}, {60, 95}, {36, 71}, {50, 86},
{15, 106}, {35, 70}, {33, 68}, {42, 76}, {175, 201}, {165, 195}, {43, 77}, {34,
69}, {180, 211}, {24, 112}, {31, 119}, {30, 118}, {29, 117}, {28, 116}, {27,
115}, {26, 114}, {25, 113}, {135, 238}, {31, 116}, {155, 240}, {37, 72}, {162,
207}, {131, 237}, {25, 118}, {42, 69}, {38, 73}, {37, 84}, {171, 218}, {166,
215}, {49, 64}, {191, 204}, {171, 223}, {159, 234}, {28, 106}, {153, 239}, {178,
197}, {41, 81}, {22, 111}, {40, 81}, {33, 88}, {32, 89}, {17, 107}, {154, 224},
{21, 110}, {190, 197}, {170, 209}, {155, 230}, {171, 214}, {18, 108}, {172,
210}, {158, 224}, {145, 239}, {19, 109}, {154, 229}, {181, 202}, {172, 211},
{157, 226}, {81, 208}, {83, 209}, {33, 162}, {87, 212}, {73, 205}, {74, 206},
{65, 199}, {40, 175}, {13, 133}, {79, 199}, {103, 239}, {92, 213}, {70, 204},
{73, 194}, {98, 233}, {79, 194}, {95, 210}, {69, 203}, {39, 168}, {78, 193},
{14, 158}, {94, 206}, {42, 187}, {43, 186}, {58, 168}, {90, 200}, {80, 195},
{101, 240}, {4, 157}, {87, 206}, {94, 196}, {71, 220}, {45, 177}, {83, 207},
{84, 200}, {5, 152}, {1, 159}, {24, 134}, {80, 207}, {77, 236}, {121, 216},
{112, 209}, {122, 217}, {123, 216}, {108, 200}, {16, 181}, {37, 128}, {27, 190},
{114, 215}, {112, 214}, {103, 192}, {14, 167}, {78, 231}, {28, 182}, {96, 203},
{124, 215}, {23, 187}, {30, 178}, {47, 128}, {3, 179}, {51, 131}, {50, 130},
{29, 173}, {12, 188}, {48, 129}, {61, 140}, {59, 138}, {7, 177}, {63, 137}, {62,
136}, {60, 139}, {99, 219}, {61, 135}, {46, 149}, {104, 211}, {110, 213}, {117,
206}, {108, 208}, {57, 132}, {59, 134}, {96, 221}, {105, 212}, {106, 212}, {9,
182}, {123, 196}, {58, 133}, {102, 217}, {86, 151}, {97, 160}, {91, 153}, {100,
166}, {85, 150}, {95, 156}, {76, 136}, {99, 167}, {94, 155}, {113, 180}, {64,
134}, {73, 143}, {82, 148}, {83, 149}, {90, 156}, {102, 160}, {93, 154}, {66,
138}, {68, 140}, {67, 139}, {91, 147}, {105, 161}, {39, 238}, {71, 142}, {45,
228}, {101, 172}, {111, 166}, {33, 235}, {98, 168}, {70, 141}, {90, 150}, {101,
169}, {103, 169}, {15, 192}, {87, 152}, {94, 145}, {107, 164}, {115, 188}, {51,
226}, {85, 132}, {91, 138}, {89, 141}, {99, 183}, {105, 191}, {109, 187}, {8,
208}, {13, 213}, {88, 128}, {48, 234}, {72, 147}, {75, 144}, {76, 145}, {95,
130}, {115, 173}, {77, 146}, {85, 138}, {117, 170}, {2, 227}, {107, 137}, {82,
177}, {111, 140}, {3, 231}, {41, 205}, {92, 184}, {93, 185}, {119, 147}, {86,
179}, {87, 178}, {1, 230}, {102, 143}, {10, 225}, {100, 143}, {46, 194}, {47,
195}, {77, 161}, {44, 193}, {82, 189}, {121, 150}, {52, 196}, {120, 136}, {114,
130}, {55, 198}, {57, 200}, {61, 207}, {40, 219}, {63, 204}, {54, 197}, {17,
228}, {63, 202}, {110, 152}, {119, 129}, {49, 198}, {62, 201}, {120, 129}, {100,
158}, {121, 131}, {101, 159}, {38, 221}, {127, 132}, {60, 199}, {43, 214}, {80,
173}, {89, 164}, {85, 171}, {99, 157}, {56, 199}, {71, 184} }>;
(II) A more general form is to represent the graph as the orbit of {18, 19}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(6, 18)(7, 22)(8, 17)(10, 30)(11, 34)(12, 29)(13, 39)(14, 41)(15,
44)(16, 48)(20, 31)(21, 55)(23, 65)(24, 69)(25, 64)(27, 75)(28, 78)(32, 84)(33,
82)(35, 90)(36, 93)(37, 89)(38, 96)(40, 99)(42, 60)(43, 103)(45, 108)(46,
111)(47, 107)(49, 118)(50, 120)(51, 117)(52, 104)(53, 125)(54, 129)(56, 109)(57,
119)(59, 66)(61, 83)(62, 114)(63, 144)(68, 148)(70, 150)(71, 154)(72, 127)(73,
100)(74, 157)(76, 95)(77, 105)(79, 163)(80, 162)(81, 167)(85, 91)(86, 122)(87,
174)(88, 177)(92, 179)(94, 172)(97, 156)(98, 185)(101, 155)(102, 190)(106,
193)(110, 198)(112, 203)(113, 134)(121, 141)(123, 139)(124, 192)(126, 200)(128,
164)(130, 136)(131, 170)(132, 147)(133, 168)(135, 209)(137, 195)(140, 149)(142,
224)(145, 210)(146, 212)(151, 217)(152, 227)(153, 171)(158, 205)(159, 230)(160,
197)(165, 233)(166, 194)(169, 186)(173, 188)(175, 183)(176, 202)(178, 225)(180,
218)(181, 234)(182, 231)(184, 229)(187, 199)(189, 235)(191, 236)(196, 211)(201,
215)(204, 222)(206, 226)(208, 228)(213, 238)(214, 239)(216, 220)(232, 237) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 159)(3, 43)(5, 230)(6, 101)(7, 214)(8, 74)(9, 103)(10, 222)(11, 36)(12,
14)(13, 62)(15, 184)(16, 186)(17, 157)(18, 155)(19, 240)(20, 171)(21, 40)(22,
239)(23, 150)(24, 127)(25, 158)(27, 188)(28, 191)(29, 41)(30, 204)(31, 153)(32,
139)(33, 151)(34, 93)(35, 104)(37, 42)(38, 149)(39, 114)(44, 229)(45, 172)(46,
112)(47, 97)(48, 169)(49, 142)(50, 98)(51, 167)(52, 90)(53, 71)(54, 233)(55,
99)(56, 220)(57, 218)(58, 219)(59, 85)(60, 89)(61, 100)(63, 178)(64, 205)(65,
70)(66, 91)(68, 86)(69, 72)(73, 83)(75, 173)(76, 128)(77, 231)(78, 236)(79,
170)(80, 102)(81, 117)(82, 217)(84, 123)(87, 202)(88, 145)(92, 192)(94, 108)(95,
164)(96, 140)(105, 182)(106, 232)(107, 156)(109, 216)(110, 175)(111, 203)(113,
147)(116, 223)(118, 224)(119, 180)(120, 185)(121, 187)(122, 148)(124, 179)(125,
154)(126, 211)(129, 165)(130, 168)(131, 163)(132, 134)(133, 136)(135, 166)(137,
197)(141, 199)(143, 207)(144, 225)(146, 189)(152, 181)(160, 195)(162, 190)(174,
176)(177, 210)(183, 198)(193, 237)(194, 209)(196, 200)(201, 213)(206, 208)(212,
235)(215, 238)(226, 228)(227, 234)
c: (1, 2)(3, 105)(4, 13)(5, 227)(6, 159)(7, 191)(8, 133)(9, 176)(10, 43)(11,
94)(12, 25)(14, 38)(15, 230)(16, 103)(17, 213)(18, 169)(19, 101)(20, 223)(21,
58)(22, 144)(23, 214)(24, 196)(26, 74)(27, 221)(28, 237)(29, 98)(30, 131)(31,
222)(32, 220)(33, 80)(34, 157)(35, 36)(37, 104)(39, 206)(40, 62)(41, 72)(42,
95)(44, 174)(45, 184)(46, 204)(47, 128)(48, 234)(49, 186)(50, 145)(51, 118)(52,
112)(53, 155)(54, 239)(55, 110)(56, 240)(57, 153)(59, 171)(60, 123)(61, 188)(63,
149)(64, 233)(65, 121)(66, 150)(67, 139)(68, 173)(69, 156)(70, 127)(71, 126)(73,
158)(75, 111)(76, 130)(77, 78)(79, 154)(81, 93)(82, 235)(83, 137)(84, 211)(85,
138)(86, 151)(87, 238)(88, 195)(89, 141)(90, 113)(91, 132)(92, 228)(96, 190)(97,
114)(99, 120)(100, 143)(102, 166)(106, 229)(107, 209)(108, 165)(109, 172)(115,
140)(116, 236)(117, 168)(119, 142)(122, 167)(124, 225)(125, 226)(129, 183)(134,
218)(135, 178)(136, 219)(146, 193)(147, 205)(148, 202)(152, 198)(160, 215)(161,
231)(162, 207)(163, 217)(164, 170)(175, 201)(177, 232)(179, 212)(180, 200)(181,
192)(182, 189)(185, 208)(187, 210)(194, 224)(197, 203)(199, 216)
C4[ 240, 98 ]
240
-1 2 5 159 230
-2 1 15 6 227
-3 231 179 16 7
-4 157 17 8 74
-5 44 1 18 152
-6 45 2 48 19
-7 177 46 3 20
-8 47 4 21 208
-9 22 48 92 182
-10 23 78 49 225
-11 24 39 50 53
-12 188 90 25 51
-13 34 133 26 213
-14 167 158 27 52
-15 2 192 106 53
-16 3 181 18 54
-17 55 4 107 228
-18 5 16 19 108
-19 56 6 18 109
-20 57 59 116 7
-21 110 58 117 8
-22 88 111 9 31
-23 187 59 52 10
-24 11 112 134 60
-25 12 113 61 118
-26 13 114 39 62
-27 14 190 115 63
-28 116 182 106 30
-29 35 117 173 64
-30 178 28 118 65
-31 22 66 116 119
-32 56 67 89 126
-33 88 68 235 162
-34 13 69 125 120
-35 70 126 29 97
-36 114 71 127 98
-37 121 72 84 128
-38 122 221 112 73
-39 11 168 26 238
-40 81 74 175 219
-41 81 104 205 75
-42 187 123 69 76
-43 77 124 214 186
-44 124 125 5 193
-45 177 126 6 228
-46 127 149 7 194
-47 104 128 8 195
-48 234 6 129 9
-49 198 53 64 10
-50 11 86 130 54
-51 55 12 226 131
-52 23 14 107 196
-53 11 56 15 49
-54 57 16 50 197
-55 198 58 17 51
-56 199 19 53 32
-57 132 200 20 54
-58 55 133 168 21
-59 23 134 138 20
-60 199 24 95 139
-61 25 135 140 207
-62 201 26 136 93
-63 202 27 137 204
-64 134 49 83 29
-65 66 199 104 30
-66 113 138 31 65
-67 123 84 139 32
-68 33 124 140 98
-69 34 113 203 42
-70 35 91 204 141
-71 220 36 184 142
-72 111 37 147 93
-73 143 38 194 205
-74 4 40 206 97
-75 144 102 115 41
-76 145 136 42 97
-77 146 236 161 43
-78 231 116 193 10
-79 199 81 106 194
-80 82 173 195 207
-81 79 40 41 208
-82 177 189 80 148
-83 209 149 64 207
-84 67 200 37 109
-85 132 138 171 150
-86 179 50 96 151
-87 178 212 206 152
-88 22 33 128 108
-89 127 141 32 164
-90 12 156 200 150
-91 70 147 138 153
-92 122 213 184 9
-93 154 72 62 185
-94 155 145 206 196
-95 210 156 60 130
-96 100 221 203 86
-97 35 160 74 76
-98 68 233 36 168
-99 167 157 183 219
-100 143 166 158 96
-101 169 159 172 240
-102 143 160 217 75
-103 169 192 105 239
-104 211 47 41 65
-105 212 103 191 161
-106 79 212 15 28
-107 137 17 52 164
-108 88 200 18 208
-109 187 125 84 19
-110 213 118 152 21
-111 22 166 72 140
-112 209 24 38 214
-113 66 25 69 180
-114 36 26 215 130
-115 188 27 173 75
-116 78 28 20 31
-117 170 29 206 21
-118 110 25 125 30
-119 147 126 129 31
-120 34 122 136 129
-121 37 150 216 131
-122 92 38 217 120
-123 67 216 42 196
-124 44 68 215 43
-125 44 34 118 109
-126 45 35 119 32
-127 132 89 46 36
-128 88 133 47 37
-129 48 160 119 120
-130 114 50 95 219
-131 121 135 237 51
-132 57 127 205 85
-133 13 58 128 185
-134 24 59 64 218
-135 203 61 238 131
-136 62 76 120 219
-137 233 63 107 162
-138 66 91 59 85
-139 220 67 211 60
-140 111 221 68 61
-141 220 89 70 170
-142 222 71 183 205
-143 100 102 190 73
-144 176 222 195 75
-145 94 151 239 76
-146 77 193 217 174
-147 91 158 72 119
-148 82 192 149 185
-149 221 46 148 83
-150 121 90 222 85
-151 145 190 212 86
-152 110 5 87 186
-153 91 223 180 239
-154 224 93 216 229
-155 94 240 186 230
-156 90 157 95 197
-157 99 156 4 226
-158 100 14 147 224
-159 1 101 234 184
-160 102 225 129 97
-161 77 231 105 182
-162 33 188 137 207
-163 187 166 167 193
-164 89 177 168 107
-165 169 180 195 185
-166 100 111 215 163
-167 99 14 228 163
-168 58 39 98 164
-169 165 101 103 227
-170 209 232 117 141
-171 223 214 85 218
-172 210 101 211 226
-173 80 115 225 29
-174 146 225 226 227
-175 201 224 181 40
-176 144 189 234 228
-177 45 82 7 164
-178 188 30 87 197
-179 3 238 86 229
-180 165 211 113 153
-181 202 16 175 230
-182 235 28 161 9
-183 99 234 215 142
-184 232 92 71 159
-185 165 133 93 148
-186 155 233 152 43
-187 23 42 163 109
-188 12 178 115 162
-189 176 231 82 237
-190 143 27 151 197
-191 232 223 105 204
-192 201 15 103 148
-193 44 78 146 163
-194 46 79 201 73
-195 165 144 47 80
-196 123 94 52 218
-197 156 178 190 54
-198 55 49 227 238
-199 56 79 60 65
-200 57 90 84 108
-201 192 62 194 175
-202 235 181 63 208
-203 69 135 96 239
-204 70 191 224 63
-205 132 73 41 142
-206 94 117 74 87
-207 80 61 83 162
-208 81 202 8 108
-209 112 213 170 83
-210 214 95 172 217
-211 180 104 139 172
-212 105 106 151 87
-213 110 209 13 92
-214 210 112 171 43
-215 166 124 114 183
-216 121 154 123 240
-217 122 210 102 146
-218 134 233 171 196
-219 99 136 40 130
-220 71 139 141 240
-221 38 149 96 140
-222 144 236 150 142
-223 191 236 171 153
-224 154 158 204 175
-225 160 173 174 10
-226 157 51 172 174
-227 198 2 169 174
-228 176 45 167 17
-229 154 179 237 230
-230 1 155 181 229
-231 78 189 3 161
-232 191 235 170 184
-233 137 218 98 186
-234 176 48 159 183
-235 33 232 202 182
-236 77 222 223 237
-237 189 236 229 131
-238 198 135 179 39
-239 145 103 203 153
-240 220 155 101 216
0