[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 101 ] =
UG(ATD[240,167]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {24, 25}, {202, 203}, {42, 43}, {116, 118}, {228, 230}, {137,
139}, {1, 2}, {136, 139}, {129, 130}, {49, 50}, {16, 19}, {101, 102}, {74, 78},
{195, 199}, {75, 79}, {122, 126}, {2, 7}, {115, 117}, {227, 229}, {163, 165},
{162, 164}, {136, 142}, {1, 6}, {211, 212}, {168, 175}, {99, 100}, {107, 108},
{53, 61}, {129, 137}, {166, 172}, {209, 219}, {208, 218}, {3, 8}, {209, 218},
{135, 140}, {86, 93}, {4, 9}, {39, 41}, {226, 236}, {130, 140}, {119, 121}, {5,
10}, {71, 72}, {55, 56}, {45, 61}, {98, 115}, {207, 222}, {205, 220}, {132,
149}, {4, 22}, {13, 31}, {12, 30}, {9, 27}, {8, 26}, {5, 23}, {110, 124}, {14,
29}, {200, 219}, {193, 210}, {37, 48}, {198, 211}, {2, 20}, {11, 29}, {10, 28},
{3, 21}, {99, 116}, {133, 146}, {41, 48}, {169, 176}, {35, 57}, {44, 54}, {161,
186}, {204, 215}, {174, 181}, {76, 80}, {77, 81}, {200, 213}, {6, 24}, {173,
179}, {172, 178}, {7, 25}, {96, 126}, {133, 154}, {8, 40}, {83, 115}, {144,
177}, {15, 43}, {206, 232}, {199, 239}, {73, 96}, {159, 182}, {147, 185}, {144,
187}, {85, 120}, {147, 190}, {88, 117}, {17, 63}, {84, 122}, {15, 32}, {148,
187}, {149, 165}, {192, 240}, {151, 167}, {16, 33}, {18, 35}, {17, 34}, {136,
187}, {87, 100}, {92, 104}, {211, 230}, {220, 233}, {143, 185}, {212, 226}, {19,
36}, {214, 225}, {146, 165}, {28, 43}, {6, 62}, {132, 188}, {7, 63}, {86, 110},
{211, 233}, {81, 109}, {136, 182}, {12, 51}, {148, 171}, {131, 188}, {40, 104},
{153, 217}, {152, 216}, {52, 117}, {143, 206}, {39, 101}, {128, 194}, {26, 89},
{156, 223}, {128, 196}, {158, 218}, {34, 103}, {170, 239}, {39, 98}, {138, 205},
{167, 224}, {8, 64}, {29, 85}, {14, 70}, {13, 69}, {12, 68}, {11, 67}, {10, 66},
{9, 65}, {153, 208}, {170, 224}, {27, 80}, {158, 213}, {146, 217}, {137, 194},
{40, 99}, {36, 111}, {31, 84}, {134, 202}, {135, 203}, {28, 81}, {151, 218},
{132, 201}, {30, 83}, {46, 96}, {162, 236}, {133, 203}, {47, 97}, {29, 82},
{162, 237}, {150, 217}, {138, 197}, {32, 112}, {152, 200}, {51, 98}, {158, 207},
{53, 100}, {58, 104}, {59, 105}, {54, 101}, {185, 234}, {145, 194}, {186, 238},
{26, 79}, {155, 206}, {60, 106}, {184, 238}, {134, 208}, {131, 213}, {63, 105},
{16, 71}, {52, 99}, {49, 102}, {38, 113}, {25, 78}, {46, 118}, {168, 240}, {145,
201}, {58, 98}, {17, 72}, {154, 195}, {21, 76}, {22, 76}, {23, 77}, {18, 73},
{22, 77}, {150, 202}, {4, 89}, {24, 69}, {14, 83}, {20, 74}, {145, 207}, {134,
216}, {21, 75}, {56, 103}, {36, 68}, {142, 234}, {180, 209}, {33, 70}, {161,
198}, {141, 234}, {130, 229}, {179, 219}, {191, 215}, {42, 67}, {191, 214},
{183, 222}, {134, 239}, {50, 91}, {49, 90}, {34, 78}, {188, 208}, {177, 221},
{135, 235}, {54, 91}, {37, 75}, {30, 113}, {138, 229}, {50, 93}, {31, 112}, {2,
114}, {7, 118}, {23, 102}, {44, 94}, {45, 95}, {159, 236}, {27, 110}, {41, 92},
{32, 86}, {155, 237}, {62, 72}, {33, 87}, {38, 81}, {42, 93}, {166, 223}, {34,
88}, {35, 89}, {164, 223}, {169, 210}, {38, 91}, {160, 221}, {37, 90}, {174,
209}, {167, 216}, {20, 149}, {105, 235}, {27, 152}, {30, 154}, {31, 155}, {28,
153}, {55, 178}, {97, 231}, {53, 189}, {82, 219}, {42, 160}, {62, 180}, {57,
179}, {78, 197}, {106, 225}, {12, 128}, {38, 170}, {24, 150}, {76, 194}, {66,
204}, {47, 161}, {25, 151}, {101, 234}, {48, 160}, {124, 237}, {15, 157}, {48,
163}, {55, 164}, {119, 227}, {54, 163}, {117, 227}, {123, 237}, {13, 154}, {53,
162}, {94, 201}, {118, 238}, {62, 167}, {95, 197}, {61, 166}, {58, 166}, {88,
196}, {5, 152}, {125, 224}, {56, 165}, {40, 182}, {61, 163}, {127, 224}, {55,
150}, {64, 225}, {57, 155}, {111, 205}, {14, 171}, {9, 175}, {11, 173}, {111,
201}, {113, 215}, {58, 146}, {77, 229}, {60, 148}, {45, 132}, {69, 239}, {103,
205}, {50, 153}, {125, 214}, {119, 220}, {122, 214}, {16, 189}, {127, 210}, {74,
228}, {32, 143}, {56, 151}, {44, 131}, {120, 215}, {123, 212}, {20, 164}, {86,
230}, {59, 138}, {45, 159}, {13, 190}, {60, 143}, {115, 192}, {3, 183}, {114,
198}, {116, 192}, {87, 226}, {93, 232}, {107, 222}, {116, 193}, {121, 204}, {41,
159}, {95, 233}, {127, 200}, {72, 240}, {1, 184}, {126, 199}, {10, 176}, {36,
158}, {124, 198}, {92, 231}, {113, 202}, {120, 195}, {47, 147}, {114, 206}, {33,
156}, {121, 196}, {35, 157}, {123, 197}, {125, 195}, {126, 193}, {67, 131},
{114, 178}, {112, 177}, {66, 129}, {70, 133}, {11, 207}, {1, 199}, {79, 137},
{47, 232}, {108, 171}, {21, 220}, {46, 231}, {85, 156}, {65, 139}, {127, 181},
{100, 168}, {125, 176}, {26, 212}, {64, 142}, {46, 225}, {82, 157}, {96, 175},
{17, 193}, {92, 141}, {80, 130}, {19, 192}, {67, 144}, {52, 231}, {108, 191},
{6, 210}, {106, 190}, {59, 238}, {104, 189}, {19, 196}, {109, 186}, {51, 235},
{97, 184}, {15, 213}, {103, 188}, {110, 181}, {111, 180}, {63, 227}, {91, 135},
{102, 186}, {52, 235}, {59, 228}, {73, 169}, {80, 176}, {79, 175}, {109, 141},
{60, 221}, {106, 139}, {109, 140}, {124, 157}, {18, 240}, {5, 230}, {82, 177},
{90, 185}, {87, 179}, {105, 141}, {57, 223}, {84, 178}, {119, 145}, {73, 174},
{64, 168}, {66, 170}, {65, 169}, {95, 183}, {68, 173}, {71, 174}, {69, 172},
{94, 183}, {122, 147}, {70, 172}, {71, 173}, {74, 161}, {85, 190}, {107, 128},
{39, 203}, {49, 221}, {84, 184}, {88, 180}, {89, 181}, {90, 182}, {112, 156},
{120, 148}, {4, 233}, {108, 129}, {83, 189}, {123, 149}, {3, 236}, {68, 171},
{97, 142}, {18, 226}, {75, 187}, {22, 228}, {43, 216}, {44, 217}, {121, 140},
{37, 222}, {107, 144}, {65, 191}, {94, 160}, {23, 232}, {51, 204} }>;
(II) A more general form is to represent the graph as the orbit of {24, 25}
under the group generated by the following permutations:
a: (2, 184)(3, 48)(4, 50)(6, 199)(7, 84)(8, 163)(9, 153)(10, 152)(11, 128)(12,
173)(13, 17)(14, 19)(15, 130)(16, 83)(18, 203)(20, 97)(21, 160)(22, 93)(23,
230)(24, 126)(25, 122)(26, 54)(27, 28)(29, 196)(30, 71)(31, 63)(32, 229)(33,
115)(34, 190)(35, 135)(36, 171)(37, 183)(38, 181)(39, 226)(40, 61)(41, 236)(42,
76)(43, 80)(44, 79)(45, 182)(46, 55)(47, 74)(49, 233)(51, 179)(52, 223)(53,
104)(56, 225)(57, 235)(58, 100)(59, 206)(60, 205)(62, 195)(64, 165)(65, 208)(66,
200)(67, 194)(69, 193)(70, 192)(72, 154)(73, 202)(75, 94)(77, 86)(78, 147)(81,
110)(82, 121)(85, 88)(87, 98)(89, 91)(90, 95)(92, 162)(96, 150)(99, 166)(101,
212)(102, 211)(103, 106)(105, 155)(107, 207)(108, 158)(109, 124)(111, 148)(112,
227)(113, 174)(114, 238)(116, 172)(117, 156)(118, 178)(119, 177)(120, 180)(123,
234)(125, 167)(127, 170)(129, 213)(131, 137)(132, 136)(133, 240)(134, 169)(138,
143)(139, 188)(140, 157)(141, 237)(142, 149)(144, 145)(146, 168)(151, 214)(164,
231)(175, 217)(176, 216)(185, 197)(186, 198)(187, 201)(191, 218)(204, 219)(209,
215)(210, 239)(220, 221)(228, 232) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 114, 198, 124, 110, 181, 127, 210, 6)(3, 67, 137, 36, 215, 117, 133,
141, 61, 49)(4, 219, 176, 72, 239, 118, 55, 47, 123, 32)(5, 18, 216, 96, 151,
122, 78, 31, 228, 57)(7, 178, 161, 237, 86, 89, 200, 169, 62, 199)(8, 131, 139,
111, 120, 227, 70, 109, 53, 50)(9, 209, 125, 17, 69, 238, 164, 232, 212, 15)(10,
240, 134, 46, 56, 147, 197, 112, 22, 179)(11, 129, 19, 113, 52, 146, 234, 45,
221, 21)(12, 51, 98, 39, 41, 48, 37, 222, 107, 128)(13, 59, 223, 23, 226, 43,
175, 218, 214, 34)(14, 140, 189, 91, 40, 44, 136, 201, 148, 119)(16, 38, 99,
217, 142, 132, 60, 220, 29, 130)(20, 206, 211, 157, 27, 174, 224, 193, 24,
184)(25, 84, 74, 155, 230, 35, 152, 73, 167, 126)(26, 213, 65, 180, 195, 63,
172, 186, 162, 93)(28, 168, 208, 225, 103, 190, 138, 156, 77, 87)(30, 235, 58,
101, 159, 160, 75, 207, 108, 196)(33, 81, 100, 153, 64, 188, 106, 205, 85,
229)(42, 79, 158, 191, 88, 154, 105, 166, 102, 236)(54, 182, 94, 187, 145, 171,
121, 83, 135, 104)(66, 192, 202, 231, 165, 185, 95, 177, 76, 173)(68, 204, 115,
203, 92, 163, 90, 183, 144, 194)(71, 170, 116, 150, 97, 149, 143, 233, 82,
80)
c: (2, 6)(3, 11)(4, 15)(7, 24)(8, 29)(9, 32)(10, 23)(12, 41)(13, 46)(14, 40)(16,
53)(17, 55)(18, 57)(19, 61)(20, 62)(21, 67)(22, 43)(26, 82)(27, 86)(28, 77)(30,
92)(31, 96)(33, 100)(34, 56)(36, 45)(37, 107)(38, 109)(39, 51)(42, 76)(44,
119)(47, 125)(48, 128)(49, 129)(50, 130)(52, 133)(54, 121)(58, 115)(59, 134)(60,
139)(63, 150)(64, 85)(65, 143)(66, 102)(68, 159)(69, 118)(70, 99)(71, 162)(72,
164)(73, 155)(74, 167)(75, 144)(78, 151)(79, 177)(80, 93)(83, 104)(84, 126)(88,
165)(89, 157)(90, 108)(91, 140)(94, 145)(95, 158)(97, 195)(101, 204)(105,
202)(111, 132)(112, 175)(113, 141)(114, 210)(116, 172)(117, 146)(120, 142)(123,
209)(124, 181)(127, 198)(131, 220)(136, 148)(137, 221)(138, 208)(147, 214)(149,
180)(152, 230)(153, 229)(154, 231)(156, 168)(160, 194)(161, 224)(163, 196)(166,
192)(169, 206)(170, 186)(171, 182)(173, 236)(174, 237)(176, 232)(178, 193)(179,
226)(183, 207)(184, 199)(185, 191)(188, 205)(190, 225)(197, 218)(200, 211)(203,
235)(212, 219)(213, 233)(215, 234)(216, 228)(217, 227)(223, 240)(238, 239)
C4[ 240, 101 ]
240
-1 199 2 6 184
-2 1 114 7 20
-3 236 183 8 21
-4 22 89 233 9
-5 23 152 10 230
-6 1 210 24 62
-7 2 25 63 118
-8 3 26 40 64
-9 4 27 65 175
-10 66 176 5 28
-11 67 29 173 207
-12 68 51 128 30
-13 154 69 190 31
-14 70 83 171 29
-15 157 213 32 43
-16 33 189 71 19
-17 34 72 193 63
-18 35 226 73 240
-19 36 16 192 196
-20 2 149 74 164
-21 220 3 75 76
-22 77 4 228 76
-23 77 232 102 5
-24 25 69 6 150
-25 78 24 7 151
-26 89 79 212 8
-27 110 80 9 152
-28 81 10 43 153
-29 11 14 82 85
-30 154 12 113 83
-31 155 13 112 84
-32 143 112 15 86
-33 156 70 16 87
-34 88 78 103 17
-35 89 57 157 18
-36 111 68 158 19
-37 90 222 48 75
-38 91 113 81 170
-39 101 203 41 98
-40 99 104 182 8
-41 48 92 159 39
-42 67 93 160 43
-43 15 28 216 42
-44 94 217 54 131
-45 132 159 61 95
-46 231 225 96 118
-47 232 147 161 97
-48 37 160 41 163
-49 221 90 102 50
-50 91 49 93 153
-51 12 235 204 98
-52 99 231 235 117
-53 100 189 61 162
-54 44 101 91 163
-55 56 178 150 164
-56 55 165 103 151
-57 155 35 179 223
-58 166 146 104 98
-59 105 138 238 228
-60 143 221 148 106
-61 45 166 53 163
-62 167 180 6 72
-63 17 105 7 227
-64 168 225 8 142
-65 169 191 139 9
-66 170 204 129 10
-67 11 144 42 131
-68 12 36 171 173
-69 13 24 172 239
-70 33 133 14 172
-71 16 72 173 174
-72 71 17 62 240
-73 169 18 96 174
-74 78 161 228 20
-75 187 79 37 21
-76 22 80 194 21
-77 22 23 81 229
-78 34 25 74 197
-79 26 137 75 175
-80 176 27 130 76
-81 77 38 28 109
-82 177 157 29 219
-83 189 14 115 30
-84 122 178 184 31
-85 156 190 29 120
-86 110 93 32 230
-87 33 100 179 226
-88 34 180 117 196
-89 35 4 26 181
-90 37 49 182 185
-91 135 38 50 54
-92 231 104 41 141
-93 232 50 42 86
-94 44 201 160 183
-95 45 233 183 197
-96 46 126 73 175
-97 231 47 184 142
-98 58 115 39 51
-99 100 116 40 52
-100 99 168 53 87
-101 102 234 39 54
-102 23 101 49 186
-103 34 56 188 205
-104 189 58 92 40
-105 59 235 63 141
-106 190 60 225 139
-107 144 222 128 108
-108 191 171 107 129
-109 81 140 141 186
-110 124 27 181 86
-111 36 201 180 205
-112 177 156 31 32
-113 202 38 215 30
-114 198 2 178 206
-115 192 83 117 98
-116 99 192 193 118
-117 88 115 227 52
-118 46 116 7 238
-119 121 220 145 227
-120 148 215 85 195
-121 204 140 119 196
-122 147 126 214 84
-123 212 149 237 197
-124 110 198 157 237
-125 176 224 214 195
-126 122 199 193 96
-127 210 200 224 181
-128 12 194 107 196
-129 66 137 108 130
-130 80 129 140 229
-131 44 67 188 213
-132 45 188 201 149
-133 154 146 70 203
-134 202 216 239 208
-135 91 235 203 140
-136 187 182 139 142
-137 79 139 194 129
-138 59 205 229 197
-139 136 137 106 65
-140 121 135 130 109
-141 234 92 105 109
-142 234 136 64 97
-143 60 206 185 32
-144 187 67 177 107
-145 201 194 119 207
-146 165 133 58 217
-147 122 47 190 185
-148 187 60 171 120
-149 132 165 123 20
-150 55 24 202 217
-151 56 167 25 218
-152 200 5 27 216
-153 28 50 217 208
-154 133 13 30 195
-155 57 237 206 31
-156 33 112 223 85
-157 35 124 15 82
-158 36 213 207 218
-159 45 236 182 41
-160 221 48 94 42
-161 198 47 74 186
-162 236 237 53 164
-163 165 48 61 54
-164 55 223 162 20
-165 56 146 149 163
-166 58 223 61 172
-167 224 62 216 151
-168 100 64 240 175
-169 176 210 73 65
-170 66 224 38 239
-171 68 14 148 108
-172 166 178 69 70
-173 11 68 179 71
-174 209 71 181 73
-175 79 168 96 9
-176 80 125 169 10
-177 144 221 112 82
-178 55 114 84 172
-179 57 173 87 219
-180 88 209 111 62
-181 110 89 127 174
-182 90 136 159 40
-183 222 3 94 95
-184 1 84 238 97
-185 143 90 234 147
-186 102 161 238 109
-187 144 136 148 75
-188 132 103 131 208
-189 16 104 83 53
-190 13 147 106 85
-191 214 215 108 65
-192 115 116 19 240
-193 210 126 17 116
-194 145 137 128 76
-195 154 199 125 120
-196 88 121 128 19
-197 78 123 138 95
-198 211 124 114 161
-199 1 126 195 239
-200 213 127 152 219
-201 132 111 145 94
-202 134 113 203 150
-203 133 135 202 39
-204 66 121 215 51
-205 220 111 103 138
-206 143 155 232 114
-207 11 145 222 158
-208 188 134 218 153
-209 180 174 218 219
-210 169 6 127 193
-211 198 233 212 230
-212 123 211 26 226
-213 200 15 158 131
-214 122 125 191 225
-215 113 191 204 120
-216 134 167 152 43
-217 44 146 150 153
-218 209 158 151 208
-219 209 200 179 82
-220 233 205 119 21
-221 177 49 60 160
-222 37 183 107 207
-223 166 57 156 164
-224 167 125 170 127
-225 46 214 106 64
-226 212 236 18 87
-227 117 63 119 229
-228 22 59 74 230
-229 77 138 227 130
-230 211 5 228 86
-231 46 92 52 97
-232 23 47 93 206
-233 220 211 4 95
-234 101 141 185 142
-235 135 105 51 52
-236 3 159 226 162
-237 155 123 124 162
-238 59 118 184 186
-239 199 134 69 170
-240 168 192 72 18
0