[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 105 ] =
PL(ATD[12,1]#DCyc[5]).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {112, 123}, {113, 122}, {116, 123}, {109, 125}, {104, 125}, {97,
121}, {93, 121}, {83, 127}, {74, 122}, {72, 121}, {64, 123}, {71, 124}, {67,
125}, {59, 124}, {53, 125}, {50, 123}, {39, 121}, {37, 122}, {31, 127}, {28,
126}, {29, 126}, {25, 126}, {19, 122}, {17, 124}, {10, 124}, {6, 127}, {4, 127},
{1, 126}, {14, 142}, {63, 191}, {54, 183}, {63, 190}, {109, 236}, {13, 143},
{64, 194}, {26, 152}, {94, 220}, {102, 228}, {55, 180}, {86, 213}, {27, 159},
{34, 166}, {79, 203}, {104, 236}, {20, 145}, {66, 199}, {45, 168}, {79, 202},
{84, 209}, {25, 159}, {62, 184}, {84, 210}, {24, 159}, {52, 179}, {38, 161},
{43, 172}, {99, 228}, {105, 238}, {12, 132}, {50, 186}, {51, 187}, {7, 142}, {5,
143}, {41, 163}, {102, 236}, {86, 221}, {94, 213}, {3, 143}, {27, 151}, {36,
168}, {111, 227}, {16, 157}, {61, 176}, {33, 172}, {94, 211}, {110, 227}, {20,
154}, {63, 177}, {31, 145}, {46, 160}, {49, 191}, {11, 132}, {21, 154}, {27,
148}, {30, 145}, {40, 167}, {7, 151}, {48, 160}, {36, 181}, {62, 175}, {34,
176}, {54, 164}, {35, 177}, {4, 151}, {33, 178}, {30, 138}, {56, 172}, {40,
188}, {83, 199}, {31, 138}, {119, 226}, {41, 188}, {18, 132}, {44, 186}, {83,
197}, {23, 128}, {45, 181}, {49, 169}, {43, 178}, {73, 208}, {65, 216}, {85,
204}, {68, 222}, {117, 239}, {73, 211}, {81, 203}, {4, 159}, {69, 222}, {67,
216}, {55, 172}, {8, 147}, {50, 169}, {82, 201}, {115, 232}, {13, 145}, {62,
162}, {15, 147}, {37, 185}, {42, 182}, {85, 201}, {30, 131}, {87, 201}, {8,
151}, {60, 163}, {58, 165}, {41, 182}, {85, 202}, {5, 165}, {116, 212}, {73,
233}, {60, 156}, {15, 175}, {113, 209}, {8, 169}, {72, 233}, {17, 176}, {33,
128}, {63, 157}, {100, 199}, {114, 209}, {70, 226}, {106, 206}, {37, 128}, {74,
239}, {97, 196}, {3, 165}, {117, 211}, {105, 207}, {105, 206}, {53, 157}, {118,
222}, {58, 146}, {46, 135}, {75, 226}, {60, 149}, {107, 194}, {108, 198}, {29,
182}, {76, 231}, {67, 232}, {97, 202}, {23, 187}, {58, 150}, {47, 131}, {49,
157}, {22, 187}, {116, 217}, {66, 239}, {57, 148}, {42, 135}, {7, 169}, {74,
228}, {23, 185}, {45, 131}, {24, 183}, {107, 219}, {114, 194}, {56, 137}, {100,
213}, {101, 212}, {115, 194}, {104, 218}, {9, 186}, {21, 166}, {39, 148}, {102,
213}, {6, 178}, {42, 158}, {82, 230}, {101, 209}, {111, 219}, {2, 183}, {4,
178}, {120, 206}, {70, 240}, {59, 141}, {112, 198}, {12, 187}, {15, 184}, {51,
132}, {94, 233}, {104, 223}, {34, 154}, {52, 140}, {100, 220}, {110, 214}, {44,
149}, {119, 206}, {57, 128}, {92, 229}, {61, 135}, {86, 236}, {8, 179}, {26,
161}, {28, 167}, {52, 143}, {15, 179}, {57, 133}, {101, 217}, {106, 214}, {113,
205}, {95, 226}, {6, 184}, {13, 179}, {32, 158}, {91, 229}, {14, 177}, {51,
140}, {108, 211}, {33, 225}, {75, 139}, {69, 133}, {2, 195}, {28, 221}, {37,
228}, {39, 230}, {1, 195}, {75, 137}, {10, 200}, {22, 212}, {29, 223}, {44,
238}, {80, 146}, {11, 200}, {96, 163}, {115, 176}, {90, 158}, {93, 153}, {21,
208}, {77, 136}, {76, 137}, {98, 167}, {20, 210}, {78, 136}, {88, 158}, {98,
164}, {10, 205}, {78, 137}, {102, 174}, {5, 204}, {76, 133}, {81, 152}, {82,
155}, {89, 144}, {112, 185}, {5, 207}, {117, 191}, {71, 141}, {58, 240}, {14,
196}, {26, 208}, {29, 215}, {90, 144}, {103, 173}, {3, 200}, {11, 192}, {107,
160}, {22, 218}, {97, 173}, {38, 235}, {65, 140}, {79, 130}, {99, 174}, {66,
140}, {120, 182}, {84, 154}, {85, 155}, {100, 170}, {84, 155}, {92, 147}, {111,
160}, {70, 150}, {81, 129}, {90, 138}, {91, 139}, {50, 227}, {119, 166}, {73,
152}, {72, 153}, {69, 148}, {62, 239}, {82, 131}, {112, 161}, {18, 192}, {60,
238}, {49, 227}, {3, 208}, {81, 130}, {89, 138}, {108, 191}, {110, 189}, {89,
141}, {118, 162}, {92, 136}, {95, 139}, {106, 190}, {7, 210}, {116, 161}, {91,
142}, {108, 185}, {1, 215}, {80, 134}, {98, 181}, {105, 190}, {106, 189}, {53,
237}, {57, 225}, {90, 130}, {31, 197}, {87, 141}, {88, 130}, {91, 129}, {6,
221}, {118, 173}, {75, 144}, {54, 237}, {14, 210}, {17, 205}, {23, 203}, {78,
146}, {18, 207}, {117, 168}, {53, 232}, {21, 200}, {22, 203}, {92, 129}, {96,
189}, {114, 175}, {9, 215}, {19, 205}, {78, 144}, {56, 231}, {77, 146}, {1,
225}, {70, 166}, {68, 164}, {32, 192}, {32, 193}, {120, 153}, {61, 220}, {40,
201}, {79, 173}, {99, 129}, {2, 225}, {118, 149}, {71, 164}, {56, 219}, {32,
195}, {39, 196}, {95, 188}, {109, 142}, {61, 217}, {98, 134}, {96, 133}, {12,
234}, {77, 171}, {109, 139}, {13, 234}, {69, 162}, {35, 196}, {24, 240}, {74,
162}, {54, 222}, {36, 204}, {9, 224}, {25, 240}, {47, 198}, {10, 224}, {66,
168}, {38, 204}, {42, 192}, {11, 224}, {12, 231}, {36, 207}, {46, 197}, {51,
216}, {87, 188}, {9, 229}, {55, 219}, {38, 202}, {107, 134}, {113, 156}, {47,
193}, {119, 153}, {86, 184}, {114, 156}, {2, 237}, {68, 171}, {64, 175}, {55,
216}, {103, 136}, {16, 224}, {68, 180}, {65, 177}, {24, 233}, {76, 189}, {26,
235}, {43, 218}, {48, 193}, {25, 235}, {71, 181}, {88, 170}, {103, 149}, {52,
199}, {88, 171}, {19, 231}, {43, 223}, {103, 147}, {16, 229}, {40, 221}, {48,
197}, {80, 165}, {115, 134}, {41, 223}, {48, 198}, {93, 171}, {28, 235}, {67,
180}, {35, 212}, {46, 217}, {80, 167}, {89, 174}, {93, 170}, {30, 230}, {59,
195}, {110, 150}, {17, 232}, {19, 234}, {35, 218}, {47, 214}, {77, 180}, {83,
170}, {87, 174}, {111, 150}, {59, 193}, {64, 186}, {44, 215}, {45, 214}, {99,
152}, {18, 238}, {95, 163}, {96, 156}, {16, 237}, {27, 230}, {20, 234}, {34,
220}, {101, 155}, {65, 190}, {120, 135}, {72, 183} }>;
(II) A more general form is to represent the graph as the orbit of {112, 123}
under the group generated by the following permutations:
a: (2, 29)(3, 31)(4, 11)(5, 30)(6, 10)(7, 51)(8, 12)(9, 33)(14, 65)(15, 19)(16,
43)(17, 86)(18, 27)(20, 52)(21, 83)(22, 49)(23, 50)(24, 42)(25, 32)(26, 48)(28,
59)(34, 100)(35, 63)(36, 82)(37, 64)(38, 47)(39, 105)(40, 71)(41, 54)(44,
57)(45, 85)(46, 73)(53, 104)(55, 91)(56, 92)(58, 90)(60, 69)(61, 94)(62,
113)(66, 84)(67, 109)(68, 95)(70, 88)(72, 120)(74, 114)(75, 77)(76, 103)(79,
110)(80, 89)(81, 111)(87, 98)(93, 119)(96, 118)(97, 106)(99, 107)(101, 117)(102,
115)(108, 116)(121, 206)(122, 175)(123, 185)(124, 221)(126, 195)(127, 200)(128,
186)(129, 219)(130, 150)(131, 204)(132, 151)(133, 149)(134, 174)(135, 233)(136,
137)(138, 165)(139, 180)(140, 210)(141, 167)(142, 216)(143, 145)(144, 146)(147,
231)(148, 238)(152, 160)(154, 199)(155, 168)(156, 162)(157, 218)(158, 240)(159,
192)(161, 198)(163, 222)(164, 188)(166, 170)(169, 187)(171, 226)(172, 229)(173,
189)(176, 213)(178, 224)(179, 234)(181, 201)(182, 183)(184, 205)(190, 196)(191,
212)(193, 235)(194, 228)(197, 208)(202, 214)(203, 227)(207, 230)(209, 239)(211,
217)(215, 225)(223, 237)(232, 236) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 3, 23, 78, 48, 8)(2, 5, 37, 77, 47, 15)(4, 25, 26, 81, 90, 31)(6, 24, 38,
99, 88, 30)(7, 29, 21, 22, 75, 46)(9, 11, 12, 56, 111, 50)(10, 51, 76, 107, 49,
44)(13, 33, 58, 112, 92, 32)(14, 41, 34, 35, 95, 61)(16, 18, 19, 55, 110,
64)(17, 65, 96, 115, 63, 60)(20, 43, 70, 116, 91, 42)(27, 28, 73, 79, 89,
83)(36, 74, 68, 45, 62, 54)(39, 40, 94, 97, 87, 100)(52, 57, 80, 108, 103,
59)(53, 105, 113, 67, 106, 114)(66, 69, 98, 117, 118, 71)(72, 85, 102, 93, 82,
86)(84, 104, 119, 101, 109, 120)(121, 201, 213)(122, 180, 214, 175, 237,
207)(123, 229, 192, 234, 172, 150)(124, 140, 133, 134, 191, 149)(125, 206,
209)(126, 208, 203, 144, 197, 151)(127, 159, 235, 152, 130, 138)(128, 146, 198,
147, 195, 143)(129, 158, 145, 178, 240, 161)(131, 184, 183, 204, 228, 171)(132,
231, 219, 227, 186, 224)(135, 210, 223, 166, 212, 139)(136, 193, 179, 225, 165,
185)(137, 160, 169, 215, 200, 187)(141, 199, 148, 167, 211, 173)(142, 182, 154,
218, 226, 217)(153, 155, 236)(156, 232, 190)(157, 238, 205, 216, 189, 194)(162,
164, 168)(163, 176, 177)(170, 230, 221, 233, 202, 174)(181, 239, 222)(188, 220,
196)
c: (1, 2)(3, 21)(4, 27)(5, 34)(6, 39)(7, 8)(9, 16)(10, 11)(12, 19)(13, 20)(14,
15)(17, 18)(22, 74)(23, 37)(24, 25)(26, 73)(28, 72)(29, 54)(30, 31)(32, 59)(33,
57)(35, 62)(36, 61)(38, 94)(40, 93)(41, 68)(42, 71)(43, 69)(44, 53)(45, 46)(47,
48)(49, 50)(51, 113)(52, 84)(55, 96)(56, 76)(58, 70)(60, 67)(63, 64)(65,
114)(66, 101)(75, 78)(77, 95)(79, 102)(80, 119)(81, 99)(82, 83)(85, 100)(86,
97)(87, 88)(89, 90)(91, 92)(98, 120)(103, 109)(104, 118)(105, 115)(106,
107)(108, 112)(110, 111)(116, 117)(121, 221)(122, 187)(123, 191)(124, 192)(125,
149)(126, 183)(127, 230)(130, 174)(131, 197)(132, 205)(133, 172)(134, 206)(135,
181)(136, 139)(140, 209)(141, 158)(142, 147)(143, 154)(146, 226)(148, 178)(153,
167)(155, 199)(156, 216)(157, 186)(160, 214)(161, 211)(162, 218)(163, 180)(164,
182)(165, 166)(168, 217)(170, 201)(171, 188)(173, 236)(175, 177)(176, 207)(179,
210)(184, 196)(189, 219)(190, 194)(202, 213)(203, 228)(204, 220)(212, 239)(215,
237)(222, 223)(232, 238)(233, 235)
d: (2, 29)(3, 12)(5, 19)(6, 27)(7, 83)(8, 31)(9, 32)(10, 18)(14, 100)(15,
30)(16, 42)(17, 105)(20, 52)(21, 51)(22, 73)(23, 26)(24, 43)(25, 33)(28, 57)(34,
65)(35, 94)(36, 113)(37, 38)(39, 86)(40, 69)(41, 54)(44, 59)(45, 114)(46,
49)(47, 64)(48, 50)(53, 120)(55, 70)(56, 58)(60, 71)(61, 63)(62, 82)(66, 84)(67,
119)(68, 95)(72, 104)(74, 85)(75, 77)(76, 80)(79, 99)(87, 118)(88, 91)(89,
103)(90, 92)(93, 109)(96, 98)(97, 102)(101, 117)(106, 115)(107, 110)(108,
116)(121, 236)(122, 204)(123, 198)(124, 238)(125, 153)(126, 225)(127, 151)(128,
235)(129, 130)(131, 175)(132, 200)(133, 167)(134, 189)(135, 157)(136, 144)(137,
146)(138, 147)(139, 171)(140, 154)(141, 149)(142, 170)(143, 234)(145, 179)(148,
221)(150, 219)(152, 203)(155, 239)(156, 181)(158, 229)(159, 178)(160, 227)(161,
185)(162, 201)(163, 164)(165, 231)(166, 216)(168, 209)(169, 197)(172, 240)(173,
174)(176, 190)(177, 220)(180, 226)(182, 237)(183, 223)(184, 230)(186, 193)(187,
208)(188, 222)(191, 217)(192, 224)(194, 214)(195, 215)(196, 213)(199, 210)(202,
228)(205, 207)(206, 232)(211, 212)(218, 233)
C4[ 240, 105 ]
240
-1 126 225 215 195
-2 225 237 183 195
-3 143 165 200 208
-4 178 159 127 151
-5 143 165 204 207
-6 221 178 127 184
-7 210 169 151 142
-8 179 147 169 151
-9 224 215 229 186
-10 200 124 224 205
-11 132 200 224 192
-12 132 187 231 234
-13 143 145 179 234
-14 177 210 196 142
-15 179 147 184 175
-16 157 224 237 229
-17 176 232 124 205
-18 132 192 238 207
-19 231 122 234 205
-20 154 210 145 234
-21 154 166 200 208
-22 187 212 203 218
-23 187 203 128 185
-24 233 159 183 240
-25 235 126 159 240
-26 235 161 152 208
-27 148 159 151 230
-28 221 167 235 126
-29 223 126 182 215
-30 145 138 131 230
-31 145 127 138 197
-32 158 192 193 195
-33 178 225 128 172
-34 154 176 220 166
-35 177 212 196 218
-36 168 181 204 207
-37 122 128 228 185
-38 202 235 204 161
-39 121 148 196 230
-40 188 221 167 201
-41 188 223 182 163
-42 135 158 192 182
-43 178 223 172 218
-44 149 215 238 186
-45 168 181 214 131
-46 135 160 217 197
-47 198 214 193 131
-48 198 160 193 197
-49 157 169 191 227
-50 123 169 227 186
-51 132 187 216 140
-52 143 199 179 140
-53 232 157 125 237
-54 222 237 183 164
-55 180 172 216 219
-56 231 137 172 219
-57 133 148 225 128
-58 165 146 150 240
-59 124 193 195 141
-60 156 149 238 163
-61 176 220 135 217
-62 162 184 239 175
-63 177 157 190 191
-64 123 194 175 186
-65 177 190 216 140
-66 199 168 140 239
-67 232 125 180 216
-68 222 180 171 164
-69 133 222 148 162
-70 166 226 150 240
-71 124 181 141 164
-72 121 233 183 153
-73 211 233 152 208
-74 122 162 228 239
-75 144 137 226 139
-76 231 133 189 137
-77 146 136 180 171
-78 144 146 136 137
-79 202 203 173 130
-80 165 134 167 146
-81 203 129 130 152
-82 155 201 131 230
-83 199 170 127 197
-84 154 209 155 210
-85 155 201 202 204
-86 221 213 236 184
-87 188 201 141 174
-88 158 170 171 130
-89 144 138 141 174
-90 144 158 138 130
-91 139 129 229 142
-92 136 147 129 229
-93 121 170 171 153
-94 220 211 233 213
-95 188 226 139 163
-96 133 156 189 163
-97 121 202 173 196
-98 134 167 181 164
-99 129 228 152 174
-100 220 199 213 170
-101 209 155 212 217
-102 213 236 228 174
-103 136 147 149 173
-104 223 125 236 218
-105 190 238 206 207
-106 189 190 214 206
-107 134 160 194 219
-108 198 211 191 185
-109 125 236 139 142
-110 189 214 150 227
-111 160 150 227 219
-112 198 123 161 185
-113 209 122 156 205
-114 209 156 194 175
-115 176 232 134 194
-116 123 212 161 217
-117 211 168 191 239
-118 222 149 162 173
-119 166 226 206 153
-120 135 182 206 153
-121 93 39 72 97
-122 113 37 19 74
-123 112 50 116 64
-124 59 71 17 10
-125 67 104 53 109
-126 1 25 28 29
-127 4 6 83 31
-128 33 23 57 37
-129 99 91 81 92
-130 88 79 90 81
-131 45 47 82 30
-132 11 12 18 51
-133 57 69 96 76
-134 80 115 107 98
-135 46 61 42 120
-136 77 78 92 103
-137 56 78 75 76
-138 89 90 30 31
-139 91 95 75 109
-140 66 51 52 65
-141 89 59 71 87
-142 14 91 7 109
-143 13 3 5 52
-144 78 89 90 75
-145 13 30 20 31
-146 77 78 58 80
-147 15 92 103 8
-148 57 69 27 39
-149 44 103 60 118
-150 110 111 58 70
-151 4 27 7 8
-152 99 26 81 73
-153 93 72 119 120
-154 34 84 20 21
-155 101 82 84 85
-156 113 114 60 96
-157 16 49 63 53
-158 88 90 42 32
-159 24 25 4 27
-160 111 46 48 107
-161 112 26 38 116
-162 69 62 74 118
-163 60 95 41 96
-164 68 71 54 98
-165 3 58 80 5
-166 34 70 119 21
-167 80 28 40 98
-168 66 45 36 117
-169 49 50 7 8
-170 88 100 93 83
-171 77 88 68 93
-172 33 55 56 43
-173 79 103 118 97
-174 99 89 102 87
-175 15 114 62 64
-176 34 115 17 61
-177 35 14 63 65
-178 33 4 6 43
-179 13 15 8 52
-180 55 77 67 68
-181 45 36 71 98
-182 29 41 42 120
-183 2 24 72 54
-184 15 6 62 86
-185 23 112 37 108
-186 44 50 9 64
-187 22 12 23 51
-188 40 95 41 87
-189 110 106 96 76
-190 105 106 63 65
-191 49 117 63 108
-192 11 18 42 32
-193 47 48 59 32
-194 114 115 107 64
-195 1 2 59 32
-196 35 14 39 97
-197 46 48 83 31
-198 112 47 48 108
-199 66 100 83 52
-200 11 3 10 21
-201 82 40 85 87
-202 79 38 85 97
-203 22 23 79 81
-204 36 5 38 85
-205 113 17 19 10
-206 105 106 119 120
-207 36 5 105 18
-208 3 26 73 21
-209 101 113 114 84
-210 14 7 84 20
-211 94 73 117 108
-212 22 35 101 116
-213 100 102 94 86
-214 110 45 47 106
-215 44 1 29 9
-216 55 67 51 65
-217 46 101 61 116
-218 22 35 104 43
-219 55 56 111 107
-220 34 100 61 94
-221 6 28 40 86
-222 68 69 118 54
-223 104 29 41 43
-224 11 16 9 10
-225 33 1 2 57
-226 70 95 75 119
-227 110 111 49 50
-228 99 102 37 74
-229 91 92 16 9
-230 27 82 39 30
-231 12 56 19 76
-232 67 115 17 53
-233 24 72 94 73
-234 12 13 19 20
-235 25 26 38 28
-236 102 104 86 109
-237 2 16 53 54
-238 44 60 105 18
-239 66 62 117 74
-240 24 25 58 70
0