[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 240, 106 ] =
UG(Rmap(480,771){5,4|6}_12).
(I) Following is a form readable by MAGMA:
g:=Graph<240|{ {144, 145}, {222, 223}, {150, 151}, {1, 3}, {4, 6}, {1, 2}, {181,
182}, {1, 5}, {19, 23}, {18, 22}, {8, 12}, {2, 7}, {235, 238}, {226, 231}, {225,
228}, {209, 212}, {208, 213}, {26, 31}, {24, 29}, {3, 6}, {2, 4}, {33, 39}, {32,
38}, {10, 12}, {25, 30}, {186, 189}, {185, 190}, {83, 91}, {160, 168}, {1, 8},
{231, 238}, {197, 204}, {163, 170}, {20, 29}, {4, 13}, {3, 10}, {2, 11}, {34,
40}, {231, 237}, {229, 239}, {227, 233}, {35, 41}, {84, 94}, {5, 14}, {176,
187}, {66, 73}, {21, 30}, {3, 15}, {227, 239}, {5, 9}, {96, 108}, {97, 109},
{98, 110}, {130, 143}, {162, 175}, {131, 142}, {7, 9}, {133, 139}, {128, 143},
{209, 222}, {208, 223}, {4, 20}, {201, 217}, {200, 216}, {15, 31}, {10, 26}, {9,
25}, {5, 21}, {110, 126}, {142, 159}, {198, 215}, {166, 183}, {143, 158}, {47,
61}, {207, 221}, {134, 148}, {200, 219}, {202, 217}, {6, 18}, {139, 159}, {138,
158}, {137, 157}, {8, 28}, {7, 19}, {103, 115}, {71, 82}, {164, 177}, {132,
145}, {36, 50}, {37, 51}, {70, 81}, {42, 50}, {196, 220}, {167, 191}, {46, 54},
{45, 53}, {44, 52}, {43, 51}, {8, 17}, {206, 215}, {15, 22}, {101, 124}, {107,
114}, {76, 86}, {204, 214}, {77, 87}, {11, 16}, {235, 240}, {193, 218}, {165,
190}, {72, 83}, {102, 125}, {7, 27}, {11, 23}, {106, 118}, {13, 16}, {237, 240},
{108, 113}, {6, 24}, {136, 150}, {75, 85}, {74, 84}, {14, 17}, {205, 237}, {207,
239}, {155, 186}, {13, 47}, {202, 232}, {200, 234}, {157, 191}, {25, 59}, {21,
49}, {27, 63}, {145, 180}, {12, 42}, {26, 60}, {16, 55}, {203, 236}, {156, 187},
{152, 191}, {79, 104}, {28, 52}, {9, 32}, {17, 56}, {78, 103}, {20, 63}, {205,
230}, {195, 232}, {140, 160}, {141, 161}, {12, 33}, {27, 54}, {24, 53}, {23,
58}, {19, 62}, {14, 35}, {129, 172}, {10, 36}, {202, 228}, {11, 37}, {13, 34},
{22, 57}, {18, 61}, {149, 165}, {89, 104}, {151, 166}, {146, 163}, {135, 182},
{144, 162}, {90, 105}, {214, 229}, {150, 165}, {80, 100}, {222, 234}, {95, 107},
{140, 185}, {157, 168}, {67, 116}, {213, 226}, {147, 164}, {93, 106}, {216,
224}, {28, 37}, {80, 105}, {16, 43}, {149, 174}, {28, 39}, {20, 40}, {21, 41},
{17, 44}, {211, 238}, {210, 239}, {27, 38}, {19, 46}, {14, 48}, {206, 240}, {15,
49}, {18, 45}, {223, 224}, {214, 233}, {88, 103}, {52, 116}, {54, 118}, {53,
117}, {50, 115}, {163, 226}, {147, 210}, {146, 211}, {58, 120}, {59, 121}, {32,
99}, {56, 123}, {152, 220}, {180, 240}, {162, 230}, {29, 88}, {169, 236}, {35,
102}, {33, 100}, {31, 90}, {60, 122}, {173, 235}, {170, 236}, {30, 89}, {154,
221}, {34, 101}, {133, 205}, {148, 220}, {38, 111}, {26, 80}, {151, 221}, {137,
194}, {161, 234}, {44, 96}, {46, 98}, {45, 97}, {57, 119}, {153, 215}, {138,
197}, {167, 232}, {22, 70}, {62, 110}, {61, 109}, {23, 71}, {132, 212}, {42,
123}, {178, 227}, {46, 127}, {44, 125}, {135, 213}, {187, 233}, {45, 126}, {137,
218}, {48, 99}, {56, 108}, {177, 229}, {29, 72}, {63, 106}, {31, 74}, {24, 78},
{141, 219}, {25, 79}, {30, 73}, {43, 124}, {39, 112}, {128, 216}, {179, 235},
{129, 217}, {40, 113}, {155, 194}, {153, 192}, {146, 203}, {41, 114}, {156,
199}, {154, 193}, {55, 107}, {181, 233}, {158, 192}, {184, 230}, {156, 195},
{175, 207}, {189, 221}, {186, 218}, {185, 217}, {184, 216}, {36, 69}, {130,
224}, {32, 68}, {49, 84}, {177, 212}, {167, 194}, {37, 67}, {138, 236}, {48,
87}, {188, 219}, {168, 192}, {171, 195}, {131, 234}, {173, 196}, {171, 194},
{169, 192}, {160, 201}, {33, 75}, {36, 78}, {170, 193}, {61, 81}, {63, 83}, {62,
82}, {190, 211}, {34, 76}, {35, 77}, {47, 64}, {189, 210}, {179, 220}, {139,
228}, {51, 92}, {183, 199}, {188, 204}, {48, 65}, {62, 79}, {147, 225}, {181,
199}, {180, 198}, {49, 66}, {169, 218}, {43, 95}, {40, 93}, {176, 197}, {178,
196}, {191, 201}, {41, 94}, {159, 232}, {148, 227}, {55, 64}, {47, 86}, {60,
69}, {58, 67}, {56, 65}, {39, 92}, {176, 203}, {149, 238}, {57, 66}, {38, 91},
{144, 237}, {42, 85}, {59, 68}, {88, 208}, {89, 209}, {105, 224}, {95, 212},
{106, 225}, {94, 211}, {93, 210}, {92, 204}, {117, 229}, {112, 228}, {116, 226},
{119, 225}, {91, 195}, {81, 200}, {83, 202}, {82, 201}, {120, 230}, {121, 231},
{84, 203}, {57, 153}, {60, 156}, {59, 155}, {58, 154}, {113, 208}, {114, 209},
{111, 197}, {55, 152}, {115, 193}, {111, 219}, {96, 213}, {98, 215}, {97, 214},
{104, 223}, {120, 207}, {118, 206}, {51, 138}, {53, 140}, {103, 222}, {116,
205}, {119, 206}, {124, 198}, {125, 199}, {50, 137}, {54, 141}, {122, 198}, {52,
139}, {123, 196}, {102, 166}, {71, 134}, {99, 162}, {100, 165}, {70, 133}, {109,
174}, {104, 172}, {105, 172}, {79, 135}, {78, 132}, {86, 155}, {122, 183}, {64,
142}, {65, 143}, {109, 188}, {115, 161}, {68, 144}, {69, 145}, {112, 164}, {96,
181}, {98, 183}, {97, 182}, {121, 174}, {80, 136}, {85, 141}, {107, 179}, {110,
182}, {127, 166}, {72, 146}, {76, 150}, {73, 147}, {77, 151}, {117, 175}, {87,
140}, {118, 173}, {90, 134}, {74, 148}, {75, 149}, {108, 178}, {126, 160}, {127,
161}, {71, 152}, {81, 142}, {90, 184}, {124, 158}, {125, 159}, {99, 128}, {100,
129}, {102, 131}, {127, 154}, {123, 157}, {64, 167}, {101, 130}, {126, 153},
{65, 168}, {67, 170}, {66, 169}, {91, 176}, {95, 180}, {92, 177}, {94, 179},
{101, 136}, {69, 171}, {68, 171}, {93, 178}, {111, 128}, {72, 185}, {76, 189},
{74, 187}, {112, 129}, {114, 131}, {117, 132}, {119, 133}, {122, 136}, {73,
186}, {77, 190}, {113, 130}, {75, 188}, {85, 173}, {86, 174}, {87, 175}, {88,
163}, {89, 164}, {70, 184}, {82, 172}, {120, 134}, {121, 135} }>;
(II) A more general form is to represent the graph as the orbit of {144, 145}
under the group generated by the following permutations:
a: (1, 2)(3, 4)(5, 7)(8, 11)(10, 13)(12, 16)(14, 19)(15, 20)(17, 23)(18, 24)(21,
27)(22, 29)(25, 32)(26, 34)(28, 37)(30, 38)(31, 40)(33, 43)(35, 46)(36, 47)(39,
51)(41, 54)(42, 55)(44, 58)(45, 53)(48, 62)(49, 63)(50, 64)(52, 67)(56, 71)(57,
72)(59, 68)(60, 76)(61, 78)(65, 82)(66, 83)(69, 86)(70, 88)(73, 91)(74, 93)(75,
95)(77, 98)(79, 99)(80, 101)(81, 103)(84, 106)(85, 107)(87, 110)(89, 111)(90,
113)(94, 118)(96, 120)(97, 117)(100, 124)(102, 127)(104, 128)(105, 130)(108,
134)(109, 132)(112, 138)(114, 141)(115, 142)(119, 146)(121, 144)(122, 150)(123,
152)(125, 154)(126, 140)(129, 158)(131, 161)(133, 163)(135, 162)(137, 167)(139,
170)(143, 172)(145, 174)(147, 176)(148, 178)(149, 180)(151, 183)(153, 185)(155,
171)(156, 189)(157, 191)(159, 193)(164, 197)(165, 198)(168, 201)(169, 202)(173,
179)(175, 182)(177, 204)(181, 207)(184, 208)(186, 195)(187, 210)(188, 212)(190,
215)(192, 217)(196, 220)(199, 221)(200, 222)(203, 225)(205, 226)(206, 211)(209,
219)(213, 230)(214, 229)(216, 223)(218, 232)(228, 236)(231, 237)(233, 239)(238,
240) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 6)(5, 8)(7, 10)(9, 12)(11, 15)(13, 18)(14, 17)(16, 22)(19, 26)(20,
24)(21, 28)(23, 31)(25, 33)(27, 36)(30, 39)(32, 42)(34, 45)(35, 44)(37, 49)(38,
50)(40, 53)(41, 52)(43, 57)(46, 60)(47, 61)(48, 56)(51, 66)(54, 69)(55, 70)(58,
74)(59, 75)(62, 80)(63, 78)(64, 81)(67, 84)(68, 85)(71, 90)(72, 88)(73, 92)(76,
97)(77, 96)(79, 100)(82, 105)(83, 103)(86, 109)(87, 108)(89, 112)(91, 115)(93,
117)(94, 116)(95, 119)(98, 122)(99, 123)(101, 126)(102, 125)(104, 129)(106,
132)(107, 133)(110, 136)(111, 137)(113, 140)(114, 139)(118, 145)(120, 148)(121,
149)(124, 153)(127, 156)(128, 157)(130, 160)(131, 159)(135, 165)(138, 169)(141,
171)(143, 168)(144, 173)(146, 163)(147, 177)(150, 182)(151, 181)(152, 184)(154,
187)(155, 188)(158, 192)(161, 195)(162, 196)(166, 199)(167, 200)(170, 203)(175,
178)(176, 193)(179, 205)(180, 206)(185, 208)(186, 204)(189, 214)(190, 213)(191,
216)(194, 219)(197, 218)(198, 215)(201, 224)(202, 222)(207, 227)(209, 228)(210,
229)(211, 226)(212, 225)(217, 223)(220, 230)(221, 233)(231, 238)(232, 234)(235,
237)
c: (3, 5)(4, 7)(6, 9)(10, 14)(12, 17)(13, 19)(15, 21)(16, 23)(18, 25)(20,
27)(22, 30)(24, 32)(26, 35)(29, 38)(31, 41)(33, 44)(34, 46)(36, 48)(39, 52)(40,
54)(42, 56)(43, 58)(45, 59)(47, 62)(50, 65)(51, 67)(53, 68)(55, 71)(57, 73)(60,
77)(61, 79)(64, 82)(69, 87)(70, 89)(72, 91)(74, 94)(75, 96)(76, 98)(78, 99)(80,
102)(81, 104)(85, 108)(86, 110)(88, 111)(90, 114)(92, 116)(93, 118)(95, 120)(97,
121)(100, 125)(101, 127)(103, 128)(105, 131)(107, 134)(109, 135)(112, 139)(113,
141)(115, 143)(117, 144)(119, 147)(122, 151)(124, 154)(126, 155)(129, 159)(130,
161)(132, 162)(133, 164)(136, 166)(137, 168)(138, 170)(140, 171)(142, 172)(145,
175)(146, 176)(148, 179)(149, 181)(150, 183)(153, 186)(156, 190)(158, 193)(160,
194)(163, 197)(165, 199)(167, 201)(173, 178)(174, 182)(177, 205)(180, 207)(184,
209)(185, 195)(187, 211)(188, 213)(189, 215)(192, 218)(198, 221)(200, 223)(204,
226)(206, 210)(208, 219)(212, 230)(214, 231)(216, 222)(217, 232)(224, 234)(227,
235)(229, 237)(233, 238)(239, 240)
C4[ 240, 106 ]
240
-1 2 3 5 8
-2 11 1 4 7
-3 1 15 6 10
-4 2 13 6 20
-5 1 14 9 21
-6 24 3 4 18
-7 2 27 19 9
-8 1 12 17 28
-9 25 5 7 32
-10 12 3 36 26
-11 23 2 37 16
-12 33 8 42 10
-13 34 47 4 16
-14 35 48 5 17
-15 22 3 49 31
-16 11 55 13 43
-17 44 56 14 8
-18 22 45 6 61
-19 23 46 7 62
-20 4 29 40 63
-21 5 49 30 41
-22 57 15 70 18
-23 11 58 71 19
-24 78 6 29 53
-25 79 59 30 9
-26 80 60 31 10
-27 38 7 63 54
-28 37 39 8 52
-29 88 24 72 20
-30 89 25 73 21
-31 90 15 26 74
-32 99 68 38 9
-33 12 100 39 75
-34 13 101 40 76
-35 77 14 102 41
-36 78 69 50 10
-37 11 67 28 51
-38 111 91 27 32
-39 33 112 92 28
-40 34 113 93 20
-41 35 114 94 21
-42 12 123 50 85
-43 124 16 51 95
-44 125 17 52 96
-45 126 18 53 97
-46 127 19 54 98
-47 13 61 64 86
-48 99 14 65 87
-49 66 15 84 21
-50 36 115 137 42
-51 37 92 138 43
-52 44 28 116 139
-53 45 24 117 140
-54 46 27 118 141
-55 16 107 64 152
-56 123 17 108 65
-57 22 66 119 153
-58 154 23 67 120
-59 121 155 68 25
-60 122 156 69 26
-61 47 81 18 109
-62 110 79 82 19
-63 27 83 106 20
-64 55 167 47 142
-65 143 56 168 48
-66 57 169 49 73
-67 58 37 170 116
-68 144 59 171 32
-69 145 36 60 171
-70 22 133 81 184
-71 23 134 82 152
-72 146 83 29 185
-73 66 147 30 186
-74 187 148 84 31
-75 33 188 149 85
-76 34 189 150 86
-77 35 190 151 87
-78 132 24 36 103
-79 25 135 104 62
-80 100 26 136 105
-81 200 70 61 142
-82 201 71 62 172
-83 91 202 72 63
-84 49 203 94 74
-85 173 42 75 141
-86 155 47 174 76
-87 77 48 140 175
-88 103 29 163 208
-89 209 104 30 164
-90 134 105 184 31
-91 176 38 83 195
-92 177 39 204 51
-93 210 178 40 106
-94 211 179 84 41
-95 212 180 107 43
-96 44 213 181 108
-97 45 214 182 109
-98 110 46 215 183
-99 48 128 162 32
-100 33 165 80 129
-101 34 124 136 130
-102 166 35 125 131
-103 88 78 222 115
-104 89 79 223 172
-105 90 80 224 172
-106 93 225 63 118
-107 55 179 114 95
-108 56 178 113 96
-109 188 61 97 174
-110 126 182 62 98
-111 38 128 197 219
-112 39 129 228 164
-113 40 108 130 208
-114 209 41 107 131
-115 103 50 193 161
-116 67 226 205 52
-117 132 53 229 175
-118 106 173 206 54
-119 133 57 225 206
-120 134 58 207 230
-121 231 135 59 174
-122 198 136 60 183
-123 56 157 42 196
-124 198 101 158 43
-125 44 199 102 159
-126 110 45 160 153
-127 154 166 46 161
-128 99 143 111 216
-129 100 112 172 217
-130 143 101 113 224
-131 102 234 114 142
-132 78 145 212 117
-133 70 139 205 119
-134 90 71 148 120
-135 121 79 213 182
-136 122 101 80 150
-137 157 50 194 218
-138 158 236 51 197
-139 133 159 52 228
-140 160 53 185 87
-141 161 85 54 219
-142 81 159 64 131
-143 158 128 130 65
-144 68 145 237 162
-145 132 144 69 180
-146 211 203 72 163
-147 210 225 73 164
-148 220 134 227 74
-149 165 238 75 174
-150 165 136 151 76
-151 77 166 221 150
-152 55 220 191 71
-153 57 126 192 215
-154 221 58 127 193
-155 59 194 86 186
-156 187 199 60 195
-157 123 168 191 137
-158 143 124 192 138
-159 232 125 139 142
-160 168 201 126 140
-161 234 115 127 141
-162 99 144 175 230
-163 88 146 170 226
-164 89 177 112 147
-165 100 190 149 150
-166 102 127 183 151
-167 232 191 194 64
-168 157 192 160 65
-169 66 192 236 218
-170 67 236 193 163
-171 68 69 194 195
-172 82 104 105 129
-173 235 85 118 196
-174 121 149 86 109
-175 117 162 207 87
-176 187 91 203 197
-177 212 92 229 164
-178 93 227 108 196
-179 220 235 94 107
-180 198 145 95 240
-181 199 233 182 96
-182 110 135 181 97
-183 122 166 199 98
-184 90 70 216 230
-185 190 72 140 217
-186 155 189 73 218
-187 176 156 233 74
-188 204 75 109 219
-189 210 221 76 186
-190 77 165 211 185
-191 167 157 201 152
-192 168 158 169 153
-193 154 115 170 218
-194 155 167 137 171
-195 232 156 91 171
-196 220 123 178 173
-197 176 111 138 204
-198 122 124 180 215
-199 156 125 181 183
-200 234 81 216 219
-201 191 82 160 217
-202 232 83 217 228
-203 176 146 236 84
-204 188 92 214 197
-205 133 116 237 230
-206 215 118 119 240
-207 221 239 120 175
-208 88 113 223 213
-209 89 222 212 114
-210 189 147 93 239
-211 146 190 94 238
-212 132 209 177 95
-213 135 226 96 208
-214 233 204 97 229
-215 198 206 98 153
-216 200 224 128 184
-217 201 202 129 185
-218 169 137 193 186
-219 111 188 200 141
-220 179 148 152 196
-221 154 189 151 207
-222 209 223 234 103
-223 222 224 104 208
-224 223 105 216 130
-225 147 106 228 119
-226 231 213 116 163
-227 178 233 148 239
-228 112 202 225 139
-229 177 214 117 239
-230 205 162 184 120
-231 121 226 237 238
-232 167 202 159 195
-233 187 181 214 227
-234 200 222 161 131
-235 179 238 173 240
-236 169 170 203 138
-237 231 144 205 240
-238 231 211 235 149
-239 210 227 207 229
-240 180 235 237 206
0