C4graphGraph forms for C4 [ 240, 107 ] = XI(Rmap(120,3){4,6|6}_10)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 240, 107 ] = XI(Rmap(120,3){4,6|6}_10).

(I) Following is a form readable by MAGMA:

g:=Graph<240|{ {116, 126}, {118, 124}, {116, 122}, {80, 121}, {80, 123}, {81, 124}, {73, 125}, {60, 122}, {35, 121}, {34, 126}, {32, 127}, {30, 125}, {12, 126}, {13, 127}, {14, 123}, {9, 127}, {11, 125}, {1, 121}, {1, 123}, {6, 124}, {1, 122}, {2, 121}, {3, 127}, {4, 122}, {5, 123}, {1, 126}, {2, 125}, {3, 124}, {26, 154}, {65, 193}, {64, 192}, {63, 191}, {27, 155}, {78, 206}, {97, 225}, {98, 226}, {4, 133}, {55, 182}, {6, 135}, {12, 141}, {15, 142}, {18, 147}, {20, 149}, {33, 160}, {103, 230}, {110, 239}, {2, 128}, {58, 184}, {3, 129}, {21, 151}, {28, 158}, {44, 174}, {104, 234}, {5, 134}, {61, 190}, {8, 139}, {21, 150}, {103, 228}, {74, 206}, {76, 200}, {104, 236}, {5, 128}, {70, 195}, {66, 199}, {50, 183}, {7, 130}, {90, 223}, {95, 218}, {105, 236}, {10, 140}, {50, 180}, {19, 148}, {71, 192}, {66, 197}, {52, 179}, {38, 161}, {78, 201}, {85, 210}, {6, 142}, {120, 240}, {7, 143}, {13, 133}, {39, 175}, {47, 167}, {96, 232}, {4, 141}, {57, 176}, {54, 191}, {52, 189}, {10, 131}, {93, 212}, {95, 214}, {2, 136}, {49, 187}, {48, 186}, {3, 137}, {91, 209}, {8, 131}, {67, 200}, {53, 190}, {37, 174}, {98, 233}, {99, 232}, {108, 231}, {46, 162}, {75, 199}, {83, 223}, {92, 208}, {98, 238}, {101, 233}, {105, 229}, {107, 231}, {7, 138}, {56, 181}, {9, 132}, {101, 232}, {102, 235}, {11, 133}, {50, 188}, {14, 128}, {15, 129}, {16, 158}, {17, 159}, {22, 152}, {23, 153}, {24, 150}, {25, 151}, {75, 197}, {93, 211}, {102, 232}, {49, 190}, {106, 229}, {11, 155}, {115, 227}, {42, 186}, {82, 194}, {14, 156}, {116, 230}, {58, 168}, {57, 171}, {56, 170}, {15, 157}, {16, 130}, {14, 157}, {119, 228}, {15, 156}, {78, 221}, {28, 136}, {71, 211}, {65, 213}, {29, 137}, {30, 138}, {31, 139}, {17, 132}, {64, 213}, {47, 186}, {101, 240}, {12, 154}, {72, 222}, {13, 155}, {46, 184}, {86, 192}, {102, 240}, {59, 172}, {119, 224}, {8, 144}, {115, 235}, {48, 168}, {9, 145}, {10, 146}, {19, 138}, {88, 193}, {90, 195}, {31, 133}, {68, 222}, {62, 164}, {35, 185}, {45, 183}, {92, 198}, {23, 140}, {60, 167}, {84, 207}, {26, 134}, {65, 221}, {27, 135}, {22, 139}, {70, 219}, {64, 221}, {43, 182}, {39, 185}, {115, 237}, {55, 169}, {42, 180}, {47, 177}, {71, 216}, {112, 239}, {91, 196}, {38, 134}, {112, 208}, {56, 152}, {77, 237}, {17, 176}, {79, 238}, {105, 200}, {18, 176}, {19, 177}, {109, 207}, {23, 180}, {114, 209}, {70, 229}, {27, 184}, {35, 128}, {44, 143}, {100, 199}, {4, 160}, {48, 148}, {5, 161}, {6, 162}, {7, 163}, {22, 179}, {59, 158}, {36, 129}, {11, 173}, {65, 231}, {64, 230}, {57, 159}, {51, 149}, {20, 178}, {76, 234}, {109, 203}, {109, 202}, {115, 212}, {13, 165}, {114, 218}, {32, 137}, {67, 234}, {111, 198}, {36, 142}, {37, 143}, {103, 205}, {8, 164}, {116, 216}, {67, 239}, {9, 165}, {10, 166}, {24, 181}, {66, 239}, {33, 140}, {79, 225}, {25, 182}, {120, 215}, {34, 141}, {86, 230}, {91, 235}, {93, 237}, {28, 173}, {60, 141}, {109, 220}, {83, 225}, {100, 214}, {105, 219}, {107, 217}, {24, 171}, {30, 173}, {42, 153}, {80, 227}, {81, 226}, {88, 235}, {38, 146}, {111, 219}, {44, 152}, {45, 153}, {99, 215}, {18, 167}, {25, 172}, {92, 233}, {107, 222}, {108, 217}, {38, 144}, {114, 196}, {39, 145}, {41, 159}, {82, 228}, {96, 215}, {120, 207}, {29, 165}, {40, 144}, {84, 236}, {91, 227}, {32, 154}, {119, 205}, {33, 155}, {40, 146}, {41, 147}, {27, 160}, {85, 238}, {20, 168}, {21, 169}, {43, 151}, {58, 135}, {83, 238}, {104, 213}, {16, 174}, {17, 175}, {42, 148}, {43, 149}, {84, 234}, {92, 226}, {100, 218}, {106, 212}, {21, 170}, {111, 208}, {31, 160}, {86, 233}, {88, 231}, {103, 216}, {110, 209}, {75, 139}, {76, 140}, {73, 136}, {120, 185}, {113, 176}, {89, 152}, {106, 171}, {12, 206}, {117, 183}, {72, 138}, {18, 208}, {87, 149}, {51, 240}, {82, 145}, {22, 210}, {119, 179}, {23, 211}, {26, 222}, {104, 172}, {20, 209}, {77, 136}, {87, 146}, {79, 137}, {110, 168}, {94, 148}, {107, 161}, {24, 212}, {114, 190}, {25, 213}, {44, 224}, {31, 210}, {72, 134}, {96, 174}, {108, 162}, {94, 145}, {19, 195}, {50, 226}, {49, 225}, {74, 154}, {111, 191}, {69, 151}, {26, 201}, {55, 228}, {52, 224}, {57, 237}, {87, 131}, {97, 181}, {16, 197}, {29, 200}, {106, 191}, {52, 227}, {112, 167}, {56, 224}, {98, 187}, {101, 188}, {63, 229}, {94, 132}, {97, 187}, {28, 199}, {95, 132}, {102, 189}, {30, 195}, {66, 156}, {67, 157}, {81, 142}, {117, 170}, {41, 201}, {73, 169}, {74, 170}, {77, 173}, {61, 220}, {113, 144}, {71, 166}, {83, 178}, {45, 207}, {113, 147}, {78, 172}, {96, 130}, {63, 220}, {117, 150}, {89, 186}, {46, 202}, {51, 215}, {40, 205}, {70, 163}, {68, 161}, {87, 178}, {88, 189}, {36, 194}, {59, 221}, {45, 203}, {77, 171}, {41, 206}, {69, 162}, {62, 217}, {49, 214}, {34, 202}, {35, 203}, {89, 177}, {90, 178}, {32, 201}, {47, 198}, {36, 205}, {37, 204}, {40, 194}, {76, 166}, {79, 165}, {86, 188}, {89, 179}, {61, 214}, {72, 163}, {108, 135}, {39, 203}, {117, 153}, {112, 156}, {69, 169}, {62, 210}, {51, 223}, {53, 216}, {54, 219}, {80, 189}, {81, 188}, {84, 185}, {34, 204}, {85, 187}, {37, 202}, {54, 217}, {53, 218}, {75, 164}, {94, 177}, {68, 180}, {95, 175}, {99, 147}, {29, 236}, {61, 204}, {85, 164}, {33, 211}, {113, 131}, {46, 220}, {63, 204}, {68, 183}, {110, 157}, {43, 223}, {118, 130}, {48, 196}, {53, 192}, {55, 194}, {54, 193}, {118, 129}, {97, 150}, {90, 163}, {118, 143}, {60, 198}, {100, 158}, {93, 166}, {99, 159}, {69, 184}, {82, 175}, {58, 196}, {59, 197}, {62, 193}, {73, 182}, {74, 181} }>;

(II) A more general form is to represent the graph as the orbit of {116, 126} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 12)(6, 17)(7, 19)(8, 21)(10, 25)(11, 26)(13, 32)(14, 35)(15, 39)(16, 42)(18, 46)(20, 51)(22, 56)(23, 59)(24, 62)(27, 41)(28, 68)(30, 72)(31, 74)(33, 78)(34, 60)(36, 82)(37, 47)(38, 73)(40, 55)(43, 87)(44, 89)(45, 66)(48, 96)(49, 98)(50, 100)(53, 86)(54, 106)(57, 108)(58, 99)(61, 92)(63, 111)(64, 71)(65, 93)(67, 84)(69, 113)(75, 117)(76, 104)(77, 107)(81, 95)(85, 97)(88, 115)(91, 102)(94, 118)(101, 114)(109, 112)(110, 120)(121, 123)(122, 126)(124, 132)(125, 134)(129, 145)(130, 148)(131, 151)(133, 154)(135, 159)(136, 161)(137, 165)(139, 170)(140, 172)(142, 175)(143, 177)(144, 169)(146, 182)(147, 184)(150, 164)(153, 197)(155, 201)(156, 203)(157, 185)(158, 180)(160, 206)(162, 176)(163, 195)(166, 213)(167, 202)(168, 215)(171, 217)(173, 222)(174, 186)(178, 223)(179, 224)(181, 210)(183, 199)(188, 218)(189, 227)(190, 233)(193, 212)(196, 232)(198, 204)(200, 236)(205, 228)(207, 239)(208, 220)(209, 240)(211, 221)(214, 226)(216, 230)(219, 229)(225, 238)(231, 237)
b: (2, 4)(3, 7)(5, 12)(6, 16)(8, 21)(9, 19)(10, 24)(13, 30)(14, 34)(15, 37)(17, 42)(18, 45)(20, 49)(22, 55)(23, 57)(25, 62)(27, 28)(29, 70)(31, 73)(32, 72)(33, 77)(35, 60)(36, 44)(38, 74)(39, 47)(40, 56)(41, 68)(43, 85)(46, 66)(48, 95)(50, 99)(51, 98)(52, 103)(53, 91)(54, 104)(58, 100)(59, 108)(61, 110)(63, 67)(64, 88)(69, 75)(71, 115)(76, 106)(78, 107)(79, 90)(80, 116)(81, 96)(82, 89)(84, 111)(86, 102)(87, 97)(92, 120)(109, 112)(113, 117)(121, 122)(123, 126)(124, 130)(125, 133)(127, 138)(128, 141)(129, 143)(131, 150)(132, 148)(134, 154)(135, 158)(136, 160)(137, 163)(139, 169)(140, 171)(142, 174)(144, 170)(145, 177)(146, 181)(147, 183)(149, 187)(151, 164)(152, 194)(153, 176)(155, 173)(156, 202)(157, 204)(159, 180)(161, 206)(162, 197)(165, 195)(166, 212)(167, 203)(168, 214)(172, 217)(175, 186)(178, 225)(179, 228)(182, 210)(184, 199)(185, 198)(188, 232)(189, 230)(190, 209)(191, 234)(192, 235)(193, 213)(196, 218)(200, 229)(201, 222)(205, 224)(207, 208)(211, 237)(215, 226)(216, 227)(219, 236)(220, 239)(221, 231)(223, 238)(233, 240)
c: (1, 2, 28, 16, 44, 119, 82, 17, 41, 12)(3, 47, 38, 13, 112, 72, 31, 15, 19, 8)(4, 14, 30, 75, 118, 89, 40, 9, 18, 26)(5, 11, 66, 7, 22, 36, 94, 113, 32, 60)(6, 48, 87, 79, 92, 68, 33, 67, 70, 62)(10, 29, 111, 107, 27, 110, 90, 85, 81, 42)(20, 83, 98, 50, 23, 76, 105, 54, 108, 58)(21, 53, 120, 24, 64, 109, 115, 25, 61, 102)(34, 80, 73, 100, 96, 56, 103, 39, 57, 78)(35, 77, 59, 37, 52, 55, 95, 99, 74, 116)(43, 49, 101, 117, 71, 84, 106, 65, 46, 91)(45, 93, 104, 63, 88, 69, 114, 51, 97, 86)(121, 136, 158, 174, 224, 228, 175, 159, 206, 126)(122, 128, 173, 197, 143, 179, 194, 132, 147, 154)(123, 125, 199, 130, 152, 205, 145, 176, 201, 141)(124, 186, 146, 165, 208, 222, 160, 157, 195, 164)(127, 167, 134, 133, 156, 138, 139, 129, 177, 144)(131, 137, 198, 161, 155, 239, 163, 210, 142, 148)(135, 168, 178, 238, 226, 180, 140, 200, 219, 217)(149, 225, 233, 183, 211, 234, 229, 193, 162, 196)(150, 192, 207, 212, 213, 220, 235, 151, 190, 240)(153, 166, 236, 191, 231, 184, 209, 223, 187, 188)(169, 218, 215, 181, 230, 203, 237, 172, 204, 189)(170, 216, 185, 171, 221, 202, 227, 182, 214, 232)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 240, 107 ]
240
-1 121 122 123 126
-2 121 125 136 128
-3 124 137 127 129
-4 122 133 160 141
-5 123 134 128 161
-6 124 135 162 142
-7 143 138 130 163
-8 144 139 131 164
-9 132 165 145 127
-10 166 146 140 131
-11 133 155 125 173
-12 154 126 206 141
-13 165 133 155 127
-14 123 156 157 128
-15 156 157 129 142
-16 158 130 174 197
-17 132 176 159 175
-18 176 167 147 208
-19 177 148 138 195
-20 209 178 168 149
-21 169 170 150 151
-22 210 179 139 152
-23 211 180 140 153
-24 212 181 171 150
-25 213 182 172 151
-26 154 134 222 201
-27 155 135 160 184
-28 199 136 158 173
-29 165 200 137 236
-30 125 138 173 195
-31 133 210 160 139
-32 154 201 137 127
-33 155 211 160 140
-34 202 126 204 141
-35 121 203 128 185
-36 194 205 129 142
-37 143 202 204 174
-38 144 134 146 161
-39 145 203 185 175
-40 144 146 194 205
-41 201 147 159 206
-42 180 148 153 186
-43 223 149 182 151
-44 143 224 152 174
-45 203 183 207 153
-46 220 202 162 184
-47 198 177 167 186
-48 168 148 196 186
-49 187 190 214 225
-50 188 180 226 183
-51 223 149 215 240
-52 189 179 224 227
-53 190 192 216 218
-54 191 193 217 219
-55 169 182 194 228
-56 224 170 181 152
-57 176 159 171 237
-58 135 168 184 196
-59 221 158 172 197
-60 198 122 167 141
-61 220 190 214 204
-62 210 193 217 164
-63 220 191 204 229
-64 221 213 192 230
-65 231 221 213 193
-66 199 156 239 197
-67 200 157 234 239
-68 222 180 161 183
-69 169 151 162 184
-70 195 163 229 219
-71 166 211 192 216
-72 134 222 138 163
-73 125 136 169 182
-74 154 170 181 206
-75 199 139 164 197
-76 166 200 234 140
-77 136 171 237 173
-78 221 201 172 206
-79 165 137 225 238
-80 121 123 189 227
-81 188 124 226 142
-82 145 194 228 175
-83 178 223 225 238
-84 234 236 185 207
-85 187 210 238 164
-86 188 233 192 230
-87 178 146 149 131
-88 231 189 235 193
-89 177 179 152 186
-90 178 223 195 163
-91 209 235 227 196
-92 198 233 226 208
-93 166 211 212 237
-94 132 177 145 148
-95 132 214 218 175
-96 232 215 130 174
-97 187 181 225 150
-98 187 233 226 238
-99 232 147 159 215
-100 199 158 214 218
-101 188 232 233 240
-102 232 189 235 240
-103 205 216 228 230
-104 234 213 236 172
-105 200 236 229 219
-106 212 191 171 229
-107 231 222 161 217
-108 231 135 162 217
-109 220 202 203 207
-110 209 157 168 239
-111 198 191 208 219
-112 156 167 239 208
-113 176 144 147 131
-114 209 190 196 218
-115 212 235 237 227
-116 122 126 216 230
-117 170 150 183 153
-118 143 124 129 130
-119 179 224 205 228
-120 215 185 207 240
-121 1 2 35 80
-122 1 4 60 116
-123 1 14 80 5
-124 3 81 6 118
-125 11 2 73 30
-126 1 12 34 116
-127 13 3 9 32
-128 2 35 14 5
-129 3 36 15 118
-130 16 7 96 118
-131 113 8 10 87
-132 17 94 95 9
-133 11 13 4 31
-134 26 5 38 72
-135 58 27 6 108
-136 77 2 28 73
-137 79 3 29 32
-138 72 7 19 30
-139 22 8 31 75
-140 33 23 10 76
-141 12 34 4 60
-142 36 15 81 6
-143 44 37 7 118
-144 113 38 40 8
-145 82 39 94 9
-146 38 40 10 87
-147 99 113 18 41
-148 48 94 19 42
-149 51 20 43 87
-150 24 117 97 21
-151 25 69 21 43
-152 22 44 56 89
-153 23 45 117 42
-154 12 26 74 32
-155 11 33 13 27
-156 66 112 14 15
-157 110 67 14 15
-158 100 59 16 28
-159 99 57 17 41
-160 33 4 27 31
-161 68 5 38 107
-162 46 69 6 108
-163 90 70 72 7
-164 62 8 85 75
-165 13 79 29 9
-166 71 93 10 76
-167 112 47 60 18
-168 110 58 48 20
-169 55 69 73 21
-170 56 117 74 21
-171 77 24 57 106
-172 78 25 59 104
-173 11 77 28 30
-174 44 37 16 96
-175 82 17 39 95
-176 57 113 17 18
-177 89 47 94 19
-178 90 83 20 87
-179 22 89 52 119
-180 23 68 50 42
-181 56 24 74 97
-182 55 25 73 43
-183 45 68 50 117
-184 46 58 69 27
-185 35 39 84 120
-186 89 47 48 42
-187 49 85 97 98
-188 101 81 50 86
-189 88 80 102 52
-190 114 49 61 53
-191 111 106 63 54
-192 71 53 64 86
-193 88 62 54 65
-194 55 36 82 40
-195 90 70 19 30
-196 58 91 48 114
-197 66 59 16 75
-198 111 47 92 60
-199 66 100 28 75
-200 67 105 29 76
-201 78 26 41 32
-202 34 46 37 109
-203 45 35 39 109
-204 34 37 61 63
-205 36 103 40 119
-206 12 78 41 74
-207 45 84 109 120
-208 111 112 92 18
-209 110 91 114 20
-210 22 62 85 31
-211 33 23 71 93
-212 24 93 115 106
-213 25 104 64 65
-214 100 49 61 95
-215 99 51 96 120
-216 103 71 116 53
-217 62 107 108 54
-218 100 114 95 53
-219 111 70 105 54
-220 46 61 63 109
-221 78 59 64 65
-222 68 26 72 107
-223 90 83 51 43
-224 44 56 52 119
-225 79 49 83 97
-226 81 92 50 98
-227 80 91 115 52
-228 55 103 82 119
-229 70 105 106 63
-230 103 116 64 86
-231 88 107 108 65
-232 99 101 102 96
-233 101 92 86 98
-234 67 104 84 76
-235 88 91 102 115
-236 104 105 29 84
-237 77 57 93 115
-238 79 83 85 98
-239 66 110 67 112
-240 101 102 51 120
0

**************